Definition.

An equation involving independent variable x, dependent variable y and the differential coefficients $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots \ldots .$. is called differential equation.

Examples:
(i) $\frac{d y}{d x}=1+x+y$
(ii) $\frac{d y}{d x}+x y=\cot x$
(iii) $\left(\frac{d^{4} y}{d x^{4}}\right)^{3}-4 \frac{d y}{d x}+4 y=5 \cos 3 x$
(iv) $x^{2} \frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=0$

Order of a differential equation:The order of a differential equation is the order of the highest derivative occurring in the differential equation. For example, the order of above differential equations are $1,1,4$ and 2 respectively.

Note: The order of a differential equation is a positive integer. To determine the order of a differential equation, it is not needed to make the equation free from radicals.
(2) Degree of a differential equation: The degree of a differential equation is the degree of the highest order derivative, when differential coefficients are made free from radicals and fractions. In other words.
the degree of a differential equation is the power of the highest order derivative occurring in differential equation when it is written as a polynomial in differential coefficients.

Note:The definition of degree does not require variables x, y, t etc. to be free from radicals and fractions. The degree of above differential equations are $1,1,3$ and 2 respectively.

