Homogeneous Differential Equation.

(1) Homogeneous differential equation:A function $f(x, y)$ is called a homogeneous function of degree n if $f(\lambda x, \lambda y)=\lambda^{n} f(x, y)$.

For example, $f(x, y)=x^{2}-y^{2}+3 x y$ is a homogeneous function of degree 2 , because $f(\lambda x, \lambda y)=$ $\lambda^{2} x^{2}-\lambda^{2} y^{2}+3 \lambda x . \lambda y=\lambda^{2} f(x, y)$. A homogeneous function $f(x, y)$ of degree n can always be written as $f(x, y)=x^{n} f\left(\frac{y}{x}\right)$ or $f(x, y)=y^{n} f\left(\frac{x}{y}\right)$. If a first-order first degree differential equation is expressible in the form $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ where $f(x, y)$ and $g(x, y)$ are homogeneous functions of the same degree, then it is called a homogeneous differential equation. Such type of equations can be reduced to variable separable form by the substitution $y=v x$. The given differential equation can be written as $\frac{d y}{d x}=\frac{x^{n} f(y / x)}{x^{n} g(y / x)}=\frac{f(y / x)}{g(y / x)}=F\left(\frac{y}{x}\right)$. If $y=v x$, then $\frac{d y}{d x}=v+x \frac{d v}{d x}$. Substituting the value of $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$, we get $v+x \frac{d v}{d x}=F(v) \Rightarrow \frac{d v}{F(v)-v}=\frac{d x}{x}$. On integration,
$\int \frac{1}{F(v)-v} d v=\int \frac{d x}{x}+C$ where C is an arbitrary constant of integration. After integration, v will be replaced by $\frac{y}{x}$ in complete solution.

(2) Algorithm for solving homogeneous differential equation

Step (i):Put the differential equation in the form $\frac{d y}{d x}=\frac{\phi(x, y)}{\psi(x, y)}$
Step (ii): Put $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in the equation in step (i) and cancel out x from the right hand side. The equation reduces to the form $v+x \frac{d v}{d x}=F(v)$.
Step (iii):Shift v on RHS and separate the variables v and x
Step (iv):Integrate both sides to obtain the solution in terms of v and x.
Step (v):Replace v by $\frac{y}{x}$ in the solution obtained in step (iv) to obtain the solution in terms of x and y.

(3) Equation reducible to homogeneous form

A first order, first degree differential equation of the form
$\frac{d y}{d x}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$, where $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
This is non-homogeneous.
It can be reduced to homogeneous form by certain substitutions. Put $x=X+h, y=Y+k$
Where h and k are constants, which are to be determined.
$\therefore \frac{d y}{d x}=\frac{d y}{d Y} \cdot \frac{d Y}{d X} \cdot \frac{d X}{d x}=\frac{d Y}{d X}$
Substituting these values in (i), we have

$$
\begin{equation*}
\frac{d Y}{d X}=\frac{\left(a_{1} X+b_{1} Y\right)+a_{1} h+b_{1} k+c_{1}}{\left(a_{2} X+b_{2} Y\right)+a_{2} h+b_{2} k+c_{2}} \tag{ii}
\end{equation*}
$$

Now h, k will be chosen such that $\left.\begin{array}{l}a_{1} h+b_{1} k+c_{1}=0 \\ a_{2} h+b_{2} k+c_{2}=0\end{array}\right]$
i.e. $\frac{h}{b_{1} c_{2}-b_{2} c_{1}}=\frac{k}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$

For these values of h and k the equation (ii) reduces to $\frac{d Y}{d X}=\frac{a_{1} X+b_{1} Y}{a_{2} X+b_{2} Y}$ which is a homogeneous differential equation and can be solved by the substitution $Y=v X$. Replacing X and Y in the solution so obtained by $x-h$ and $y-k$ respectively, we can obtain the required solution in terms of x and y.

