
Homogeneous Differential Equation. 
 
(1) Homogeneous differential equation:A function f(x, y) is called a homogeneous function of 
degree n if ),(),( yxfyxf n  . 

 

For example, xyyxyxf 3),( 22   is a homogeneous function of degree 2, because ),( yxf 

).,(.3 22222 yxfyxyx    A homogeneous function f(x, y) of degree n can always be 
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  where f(x, y) and g(x, y) are homogeneous functions of the 

same degree, then it is called a homogeneous differential equation. Such type of equations can 
be reduced to variable separable form by the substitution .vxy  The given differential equation 

can be written as 
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1  where C is an arbitrary constant of integration. After integration, v will 

be replaced by 
x

y  in complete solution. 

 
(2) Algorithm for solving homogeneous differential equation 

Step (i):Put the differential equation in the form 
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Step (ii): Put y = vx and 
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  in the equation in step (i) and cancel out x from the right 

hand side. The equation reduces to the form )(vF
dx

dv
xv  . 

Step (iii):Shift v on RHS and separate the variables v and x 
Step (iv):Integrate both sides to obtain the solution in terms of v and x. 

Step (v):Replace v by 
x

y  in the solution obtained in step (iv) to obtain the solution in terms of x 

and y. 
 
 



 
 
 
 
(3) Equation reducible to homogeneous form 
A first order, first degree differential equation of the form 
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This is non-homogeneous. 
It can be reduced to homogeneous form by certain substitutions. Put kYyhXx  ,  

Where h and k are constants, which are to be determined. 
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Substituting these values in (i), we have 
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Now h, k will be chosen such that 
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For these values of h and k the equation (ii) reduces to 
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  which is a 

homogeneous differential equation and can be solved by the substitution Y = vX. Replacing X 
and Y in the solution so obtained by hx   and ky   respectively, we can obtain the required 

solution in terms of x and y. 
 


