Miscellaneous Differential Equation.

(1) A special type of second order differential equation:
$$\frac{d^2y}{dx^2} = f(x)$$
(i)
Equation (i) may be re-written as $\frac{d}{dx}\left(\frac{dy}{dx}\right) = f(x) \Rightarrow d\left(\frac{dy}{dx}\right) = f(x)dx$
Integrating, $\frac{dy}{dx} = \int f(x)dx + c_1 i.e. \frac{dy}{dx} = F(x) + c_1$ (ii)
Where $F(x) = \int f(x)dx + c_1dx$
From (ii), $dy = f(x)dx + c_1dx$
Integrating, $y = \int F(x)dx + c_1x + c_2$
 $\therefore y = H(x) + c_1x + c_2$
Where $H(x) = \int F(x)dx$ c_1 and c_2 are arbitrary constants.

(2) **Particular solution type problems:** To solve such a problem, we proceed according to the type of the problem (*i.e.* variable-separable, linear, exact, homogeneous etc.) and then we apply the given conditions to find the particular values of the arbitrary constants.