Laws of Indices.

(1) $a^{0}=1, \quad(a \neq 0)$
(2) $a^{-m}=\frac{1}{a^{m}},(a \neq 0)$
(3) $a^{m+n}=a^{m} \cdot a^{n}$, Where m and n are rational numbers
(4) $a^{m-n}=\frac{a^{m}}{a^{n}}$, Where m and n are rational numbers, $a \neq 0$
(5) $\left(a^{m}\right)^{n}=a^{m n}$
(6) $a^{p / q}=\sqrt[q]{a^{p}}$
(7) If $x=y$, then $a^{x}=a^{y}$, but the converse may not be true.

For example: $(1)^{6}=(1)^{8}$, but $6 \neq 8$

If $a \neq \pm 1$, or 0 , then $x=y$
(ii) If $a=1$, then x, y may be any real number
(iii) If $a=-1$, then x, y may be both even or both odd
(iv) If $a=0$, then x, y may be any non-zero real number

But if we have to solve the equations like $[f(x)]^{\phi(x)}=[f(x)]^{\Psi(x)}$ then we have to solve :
(a) $f(x)=1$
(b) $f(x)=-1$
(c) $f(x)=0$
(d) $\phi(x)=\Psi(x)$

Verification should be done in (b) and (c) cases
(8) $a^{m} \cdot b^{m}=(a b)^{m}$ is not always true

In real domain, $\sqrt{a} \sqrt{b}=\sqrt{(a b)}$, only when $a \geq 0, b \geq 0$
In complex domain, $\sqrt{a} \cdot \sqrt{b}=\sqrt{(a b)}$, if at least one of a and b is positive.
(9) If $a^{x}=b^{x}$ then consider the following cases:
(i) If $a \neq \pm b$, then $x=0$
(ii) If $a=b \neq 0$, then x may have any real value
(iii) If $a=-b$, then x is even.

If we have to solve the equation of the form $[f(x)]^{\phi(x)}=[g(x)]^{\phi(x)}$ i.e., same index, different bases, then we have to solve
(a) $f(x)=g(x)$,
(b) $f(x)=-g(x)$,
(c) $\phi(x)=0$

Verification should be done in (b) and (c) cases.

