Definition of Surds.

Any root of a number which cannot be exactly found is called a surd.
Let a be a rational number and n is a positive integer. If the $n^{\text {th }}$ root of x i.e., $x^{1 / n}$ is irrational, then it is called surd of order n.
Order of a surd is indicated by the number denoting the root.
For example $\sqrt{7}, \sqrt[3]{9},(11)^{3 / 5}, \sqrt[n]{3}$ are surds of second, third, fifth and $n^{\text {th }}$ order respectively. A second order surd is often called a quadratic surd, a surd of third order is called a cubic surd.

Note: If a is not rational, $\sqrt[n]{a}$ is not a surd.

