Cube Root of a Binomial Quadratic Surd.

If $(a+\sqrt{b})^{1 / 3}=x+\sqrt{y}$ then $(a-\sqrt{b})^{2 / 3}=x-\sqrt{y}$, where a is a rational number and b is a surd. Procedure of finding $(a+\sqrt{b})^{1 / 3}$ is illustrated with the help of an example:
Taking $(37-30 \sqrt{3})^{1 / 3}=x+\sqrt{y}$ we get on cubing both sides, $37-30 \sqrt{3}$
$=x^{3}+3 x y-\left(3 x^{2}+y\right) \sqrt{y}$
$\therefore x^{3}+3 x y=37$
$\left(3 x^{2}+y\right) \sqrt{y}=30 \sqrt{3}=15 \sqrt{12}$

As $\sqrt{3}$ cannot be reduced, let us assume $y=3$ we get $3 x^{2}+y=3 x^{2}+3=30 \therefore x=3$ Which doesn't satisfy $x^{3}+3 x y=37$

Again taking $y=12$, we get
$3 x^{2}+12=15, ~ \therefore x=1$
$x=1, y=12$ Satisfy $x^{3}+3 x y=37$
$\therefore \sqrt[3]{37-30 \sqrt{3}}=1-\sqrt{12}=1-2 \sqrt{3}$

