Definition.

An expression of the form $\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomial in x, is called a rational fraction.
(1) Proper rational functions: Functions of the form $\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomials and $g(x) \neq 0$, are called rational functions of x.
If degree of $f(x)$ is less than degree of $g(x)$, then $\frac{f(x)}{g(x)}$ is called a proper rational function.
Example. $\frac{x+2}{x^{2}+2 x+4}$ is a proper rational function.
(2) Improper rational functions:If degree of $f(x)$ is greater than or equal to degree of $g(x)$, then $\frac{f(x)}{g(x)}$ is called an improper rational function.
For example: $\frac{x^{3}}{(x-1)(x-2)}$ is an improper rational function.
(3) Partial fractions:Any proper rational function can be broken up into a group of different rational fractions, each having a simple factor of the denominator of the original rational function. Each such fraction is called a partial fraction.
If by some process, we can break a given rational function $\frac{f(x)}{g(x)}$ into different fractions, whose denominators are the factors of $g(x)$, then the process of obtaining them is called the resolution or decomposition of $\frac{f(x)}{g(x)}$ into its partial fractions.

