Different Cases of Partial Fractions.

(1) When the denominator consists of non-repeated linear factors: To each linear factor $(x-a)$ occurring once in the denominator of a proper fraction, there corresponds a single partial fraction of the form $\frac{A}{x-a}$, where A is a constant to be determined.
If $g(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots \ldots . .\left(x-a_{n}\right)$, then we assume that,
$\frac{f(x)}{g(x)}=\frac{A_{1}}{x-a_{1}}+\frac{A_{2}}{x-a_{2}}+\ldots \ldots+\frac{A_{n}}{x-a_{n}}$
Where $A_{1}, A_{2}, A_{3} \ldots A_{n}$ are constants, can be determined by equating the numerator of L.H.S. to the numerator of R.H.S. (after L.C.M.) and substituting $x=a_{1}, a_{2} \ldots \ldots a_{n}$.

Note: Remainder of polynomial $f(x)$, when divided by $(x-a)$ is $f(a)$.
e.g., Remainder of $x^{2}+3 x-7$, when divided by $x-2$ is $(2)^{2}+3(2)-7=3$.
$\square \frac{p x+q}{(x-a)(x-b)}=\frac{p a+q}{(x-a)(a-b)}+\frac{p b+q}{(b-a)(x-b)}$
(2) When the denominator consists of linear factors, some repeated: To each linear factor (x - a) occurring r times in the denominator of a proper rational function, there corresponds a sum of r partial fractions.

Let $g(x)=(x-a)^{k}\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots \ldots . .\left(x-a_{r}\right)$. Then we assume that $\frac{f(x)}{g(x)}=\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\ldots . .+\frac{A_{k}}{(x-a)^{k}}+\frac{B_{1}}{\left(x-a_{1}\right)}+\ldots . .+\frac{B_{r}}{\left(x-a_{r}\right)}$
Where $A_{1}, A_{2}, \ldots . . ., A_{k}$ are constants. To determined the value of constants adopt the procedure as above.
(3) When the denominator consists of non-repeated quadratic factors: To each irreducible non repeated quadratic factor $a x^{2}+b x+c$, there corresponds a partial fraction of the form $\frac{A x+B}{a x^{2}+b x+c}$, where A and B are constants to be determined.

Note: $\frac{p x+q}{x^{2}(x-a)}=\frac{-q}{a x^{2}}-\frac{p a+q}{a^{2} x}+\frac{p a+q}{a^{2}(x-a)}$
$\square \frac{p x+q}{x(x-a)^{2}}=\frac{q}{a^{2} x}-\frac{q}{a^{2}(x-a)}+\frac{p a+q}{a(x-a)^{2}}$
$\square \frac{p x+q}{x\left(x^{2}+a^{2}\right)}=\frac{q}{a^{2} x}+\frac{p a^{2}-q x}{a^{2}\left(x^{2}+a^{2}\right)}$
(4) When the denominator consists of repeated quadratic factors: To each irreducible quadratic factor $a x^{2}+b x+c$ occurring r times in the denominator of a proper rational fraction there corresponds a sum of r partial fractions of the form.

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots \ldots \ldots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

Where, A's and B's are constants to be determined.

