Different Cases of Partial Fractions

(1) When the denominator consists of non-repeated linear factors: To each linear factor
(x —a) occurring once in the denominator of a proper fraction, there corresponds a single

partial fraction of the form , Where A is a constant to be determined.
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If g(x) = (x—a)(x —a,)(x —a3)......(x —a,), then we assume that,
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Where 4,,4,, A, ...... A, are constants, can be determined by equating the numerator of L.H.S. to

the numerator of R.H.S. (after L.C.M.) and substituting x = q,,a,......a, .

Note: Remainder of polynomial f{x), when divided by (x —a)is f(a).
e.g., Remainder of x2 +3x —7 ,when divided by x -2 is (2)* +3(2)-7=3.
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(2) When the denominator consists of linear factors, some repeated: To each linear factor (x
—a) occurring r times in the denominator of a proper rational function, there corresponds a sum
of r partial fractions.

Let g(x)=(x —a)'(x —a))(x —a,).......(x —a.) . Then we assume that
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Where 4,,4,,......, 4, are constants. To determined the value of constants adopt the procedure
as above.

(3) When the denominator consists of non-repeated quadratic factors: To each irreducible

non repeated quadratic factorax?® +bx +c, there corresponds a partial fraction of the form
Ax + B

— where A and B are constants to be determined.
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(4) When the denominator consists of repeated quadratic factors: To each irreducible
quadratic factor ax* + bx +¢ occurring r times in the denominator of a proper rational fraction
there corresponds a sum of r partial fractions of the form.
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Where, A's and B's are constants to be determined.



