Logarithm of a Complex Number.

Let z = x + iy and $\log_e(x + iy) = a + ib$ (i) $x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta}$ (ii) then $x = r \cos \theta$, $y = r \sin \theta$, clearly $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ From equation (ii), $\log(x + iy) = \log_e(re^{i\theta}) = \log r + \log_e e^{i\theta} = \log_e r + i\theta$ $= \log_e \sqrt{(x^2 + y^2)} + i \tan^{-1}\left(\frac{y}{x}\right)$ $\boxed{\log_e(z) = \log_e |z| + iamp z}$ Obviously, the general value is $Log(z) = \log_e(z) + 2\pi ni$ $(-\pi < amp(z) < \pi)$