Geometry of Complex Numbers.

(1) Geometrical representation of algebraic operations on complex numbers
(i) Sum: Let the complex numbers $z_{1}=x_{1}+i y_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=x_{2}+i y_{2}=\left(x_{2}, y_{2}\right)$ be represented by the points P and Q on the argand plane.
Then sum of z_{1} and z_{2} i.e., $z_{1}+z_{2}$ is represented by the point R. Complex number z can be represented by $\overrightarrow{O R}$.
$=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(z_{1}+z_{2}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$
In vector notation, we have $z_{1}+z_{2}=\overrightarrow{O P}+\overrightarrow{O Q}=\overrightarrow{O P}+\overrightarrow{P R}=\overrightarrow{O R}$

(ii) Difference:We first represent $-z_{2}$ by Q^{\prime}, so that QQ ' is bisected at O .

The point R represents the difference $z_{1}-z_{2}$.
In parallelogram ORPQ, $\overrightarrow{O R}=\overrightarrow{Q P}$
We have in vectorial notation $z_{1}-z_{2}=\overrightarrow{O P}-\overrightarrow{O Q}=\overrightarrow{O P}+\overrightarrow{Q O}$

$$
=\overrightarrow{O P}+\overrightarrow{P R}=\overrightarrow{O R}=\overrightarrow{Q P} .
$$

(iii) Product: Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)=r_{1} e^{i \theta_{1}}$

$\therefore\left|z_{1}\right|=r_{1}$ andarg $\left(z_{1}\right)=\theta_{1}$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)=r_{2} e^{i \theta_{2}}$
$\therefore\left|z_{2}\right|=r_{2} \operatorname{andarg}\left(z_{2}\right)=\theta_{2}$
Then, $z_{1} z_{2}=r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$=r_{1} r_{2}\left\{\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right\}$
$\therefore\left|z_{1} z_{2}\right|=r_{1} r_{2}$ and $\arg \left(z_{1} z_{2}\right)=\theta_{1}+\theta_{2}$
R is the point representing product of complex numbers z_{1} and z_{2}.

Important Tips

- Multiplication of i : Since $z=r(\cos \theta+i \sin \theta)$ and $i=\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$ then
$i z=\left[\cos \left(\frac{\pi}{2}+\theta\right)+i \sin \left(\frac{\pi}{2}+\theta\right)\right]$
Hence, multiplication of z with i then vector for z rotates a right angle in the positive sense.
i.e., To multiply a vector by -1 is to turn it through two right angles.
i.e., To multiply a vector by $(\cos \theta+i \sin \theta)$ is to turn it through the angle θ in the positive
sense.
(iv) Division:Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)=r_{1} e^{i \theta_{1}}$
$\therefore\left|z_{1}\right|=r_{1} \operatorname{andarg}\left(z_{1}\right)=\theta_{1}$
and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)=r_{2} e^{i \theta_{2}}$
$\therefore\left|z_{2}\right|=r_{2} \operatorname{andarg}\left(z_{2}\right)=\theta_{2}$
Then $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \frac{\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{\left(\cos \theta_{2}+i \sin \theta_{2}\right)}\left(z_{2} \neq 0, r_{2} \neq 0\right)$

$\Rightarrow \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$
$\therefore\left|\frac{z_{1}}{z_{2}}\right|=\frac{r_{1}}{r_{2}}, \arg \left(\frac{z_{1}}{z_{2}}\right)=\theta_{1}-\theta_{2}$

Note: The vertical angle R is $-\left(\theta_{2}-\theta_{1}\right)$ i.e., $\theta_{1}-\theta_{2}$.
If θ_{1} and θ_{2} are the principal values of z_{1} and z_{2} then $\theta_{1}+\theta_{2}$ and $\theta_{1}-\theta_{2}$ are not necessarily the principal value of $\arg \left(z_{1} z_{2}\right)$ and $\arg \left(z_{1} / z_{2}\right)$.

