Use of Complex Numbers in Co-ordinate Geometry.

(1) Distance formula:The distance between two points $P\left(z_{1}\right)$ and $Q\left(z_{2}\right)$ is given by $P Q \neq z_{2}-z_{1}|=|$ affix of $\mathrm{Q}-\operatorname{affix}$ of $\mathrm{P} \mid$

Note: The distance of point z from origin $|z-0|=|z|=|z-(0+i 0)|$. Thus, modulus of a complex number z represented by a point in the argand plane is its distance from the origin.
Three points $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ are collinear then $A B+B C=A C$
i.e., $\left|z_{1}-z_{2}\right|+\left|z_{2}-z_{3}\right|=z_{1}-z_{3} \mid$.
(2) Section formula:If $R(z)$ divides the joining of $P\left(z_{1}\right)$ and $Q\left(z_{2}\right)$ in the ratio $m_{1}: m_{2}\left(m_{1}, m_{2}>0\right)$
(i) If $\mathrm{R}(\mathrm{z})$ divides the segment PQ internally in the ratio of $m_{1}: m_{2}$ then $z=\frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}$
(ii) If $\mathrm{R}(\mathrm{z})$ divides the segment PQ externally in the ratio of $m_{1}: m_{2}$ then $z=\frac{m_{1} z_{2}-m_{2} z_{1}}{m_{1}-m_{2}}$

Note: If $\mathrm{R}(\mathrm{z})$ is the midpoint of PQ then affix of R is $\frac{z_{1}+z_{2}}{2}$
If z_{1}, z_{2}, z_{3} are affixes of the vertices of a triangle, then affix of its centroid is $\frac{z_{1}+z_{2}+z_{3}}{3}$.
(3) Equation of the perpendicular bisector:If $P\left(z_{1}\right)$ and $Q\left(z_{2}\right)$ are two fixed points and $R(z)$ is moving point such that it is always at equal distance from $P\left(z_{1}\right)$ and $Q\left(z_{2}\right)$
i.e., $\mathrm{PR}=$ or $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
$\Rightarrow\left|z-z_{1}\right|^{2}=\left|z-z_{2}\right|^{2}$
$\Rightarrow\left(z-z_{1}\right)\left(\overline{z-z_{1}}\right)=\left(z-z_{2}\right)\left(\overline{z-z_{2}}\right)$

$\Rightarrow\left(z-z_{1}\right)\left(\bar{z}-\bar{z}_{1}\right)=\left(z-z_{2}\right)\left(\bar{z}-\bar{z}_{2}\right)$
$\Rightarrow \bar{z} z\left(\bar{z}_{1}-\bar{z}_{2}\right)+\bar{z}\left(z_{1}-z_{2}\right)=z_{1} \bar{z}_{1}-z_{2} \bar{z}_{2} \quad \Rightarrow z\left(\bar{z}_{1}-\bar{z}_{2}\right)+\bar{z}\left(z_{1}-z_{2}\right)=\left|z_{1}\right|^{2}-\left|\bar{z}_{2}\right|^{2}$
Hence, z lies on the perpendicular bisector of z_{1} and z_{2}.

(4) Equation of a straight line

(i) Parametric form: Equation of a straight line joining the point having affixes z_{1} and z_{2} is $z=t z_{1}+(1-t) z_{2}$, when $t \in R$
(ii) Non parametric form: Equation of a straight line joining the points having affixes z_{1} and z_{2}
is $\left|\begin{array}{ccc}z & \bar{z} & 1 \\ z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1\end{array}\right|=0 \Rightarrow z\left(\bar{z}_{1}-\bar{z}_{2}\right)-\bar{z}\left(z_{1}-z_{2}\right)+z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}=0$.
Note: Three points z_{1}, z_{2} and z_{3} are collinear $\left|\begin{array}{lll}z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1 \\ z_{3} & \bar{z}_{3} & 1\end{array}\right|=0$
(iii) General equation of a straight line: The general equation of a straight line is of the form $\bar{a} z+a \bar{z}+b=0$, where a is complex number and b is real number.
(iv) Slope of a line: The complex slope of the line $\bar{a} z+a \bar{z}+b=0$ is $-\frac{a}{\bar{a}}=-\frac{\operatorname{coeff.~of~} \bar{z}}{\text { coeff. of } z}$ and real slope of the line $\bar{a} z+a \bar{z}+b=0$ is $-\frac{\operatorname{Re}(a)}{\operatorname{Im}(a)}=-i \frac{(a+\bar{a})}{(a-\bar{a})}$.

Note: If α_{1} and α_{2} are the are the complex slopes of two lines on the argand plane, then
(i) If lines are perpendicular then $\alpha_{1}+\alpha_{2}=0$ (ii) If lines are parallel then $\alpha_{1}=\alpha_{2}$

If lines $a \bar{z}+\bar{a} z+b=0$ and $a_{1} \bar{z}+\bar{a}_{1} z+b_{1}=0$ are the perpendicular or parallel, then $\left(\frac{-a}{a}\right)+\left(\frac{-a_{1}}{\bar{a}_{1}}\right)=0$ or $\frac{-a}{\bar{a}}=\frac{-a_{1}}{\bar{a}_{1}} \Rightarrow a \bar{a}_{1}+a_{1} \bar{a}=0$ or $a \bar{a}_{1}-\bar{a} a_{1}=0$, where a, a_{1} are the complex numbers and $b, b_{1} \in R$.
(v) Slope of the line segment joining two points: If $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ represent two points in the argand plane then the complex slope of $A B$ is defined by $\frac{z_{1}-z_{2}}{\bar{z}_{1}-\bar{z}_{2}}$.

Note: If three points $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are collinear then slope of $\mathrm{AB}=$ slope of $B C=$ slope of $A C$

$\frac{z_{1}-z_{2}}{\bar{z}_{1}-\bar{z}_{2}}=\frac{z_{2}-z_{3}}{\bar{z}_{2}-\bar{z}_{3}}=\frac{z_{1}-z_{3}}{\bar{z}_{1}-\bar{z}_{3}}$
(vi) Length of perpendicular: The length of perpendicular from a point z_{1} to the line $\bar{a} z+a \bar{z}+b=0$ is given by $\frac{\left|\bar{a} z_{1}+a \bar{z}_{1}+b\right|}{|a|+|\bar{a}|}$ or $\frac{\left|\bar{a} z_{1}+a \bar{z}_{1}+b\right|}{2|a|}$
(5) Equation of a circle: The equation of a circle whose centre is at point having affix z_{o} and radius r is $\left|z-z_{o}\right|=r$

Note: If the centre of the circle is at origin and radius r, then its equation is $|z|=r$. $\left|z-z_{0}\right|<r$ represents interior of a circle $\left|z-z_{0}\right|=r$ and $\left|z-z_{0}\right|>r$ represent exterior of the circle $\left|z-z_{0}\right|=r$. Similarly, $\left|z-z_{0}\right|>r$ is the set of all points lying outside the circle and $\left|z-z_{0}\right| \geq r$ is the set of all points lying outside and on the circle $\left|z-z_{0}\right|=r$.

(i) General equation of a circle: The general equation of the circle is $z \bar{z}+a \bar{z}+\bar{a} z+b=0$ where a is complex number and $b \in R$.
\therefore Centre and radius are -a and $\sqrt{\left.a\right|^{2}-b}$ respectively.

Note: Rule to find the center and radius of a circle whose equation is given:

- Make the coefficient of $z \bar{z}$ equal to 1 and right hand side equal to zero.
- The center of circle will be $=-\mathrm{a}=-$ coefficent of \bar{z}
- Radius $=\sqrt{|a|^{2}-\text { constant term }}$
(ii) Equation of circle through three non-collinear points: Let $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are three points on the circle and $P(z)$ be any point on the circle, then $\angle A C B=\angle A P B$ Using coni method
In $\triangle \mathrm{ACB}, \frac{z_{2}-z_{3}}{z_{1}-z_{3}}=\frac{B C}{C A} e^{i \theta}$

In $\triangle \mathrm{APB}, \frac{z_{2}-z}{z_{1}-z}=\frac{B P}{A P} e^{i \theta}$
From (i) and (ii) we get
$\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}=$ Real
(iii) Equation of circle in diametric form: If end points of diameter represented by $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ and $P(z)$ be any point on circle then, $\left(z-z_{1}\right)\left(\bar{z}-\bar{z}_{2}\right)+\left(z-z_{2}\right)\left(\bar{z}-\bar{z}_{1}\right)=0$ Which is required equation of circle in diametric form.
(iv) Other forms of circle:(a) Equation of all circle which are orthogonal to $\left|z-z_{1}\right|=r_{1}$ and $\left|z-z_{2}\right|=r_{2}$. Let the circle be $|z-\alpha|=r$ cut given circles orthogonally $\Rightarrow r^{2}+r_{1}^{2}=\left|\alpha-z_{1}\right|^{2}$
and $r^{2}+r_{2}^{2}=\left|\alpha-z_{2}\right|^{2}$
on solving $r_{2}^{2}-r_{1}^{2}=\alpha\left(\bar{z}_{1}-\bar{z}_{2}\right)+\bar{\alpha}\left(z_{1}-z_{2}\right)+\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}$ and let $\alpha=a+i b$

(b) $\left|\frac{z-z_{1}}{z-z_{2}}\right|=\mathrm{k}$ is a circle if $k \neq 1$ and a line if $\mathrm{k}=1$.
(c) The equation $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=k$, will represent a circle if $k \geq \frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$
(6) Equation of parabola:Now for parabola $S P=P M$
$|z-a|=\frac{|z+\bar{z}+2 a|}{2}$
or $z \bar{z}-4 a(z+\bar{z})=\frac{1}{2}\left\{z^{2}+(\bar{z})^{2}\right\}$
Where $a \in R$ (focus)
Directrix is $z+\bar{z}+2 a=0$
(7) Equation of ellipse: For ellipse $S P+S^{\prime} P=2 a$
$\Rightarrow\left|z-z_{1}\right|+\left|z-z_{2}\right|=2 a$

Where $2 a\rangle z_{1}-z_{2} \mid \quad$ (since eccentricity <1)

Then point z describes an ellipse having foci at z_{1} and z_{2} and $a \in R^{+}$.
(8) Equation of hyperbola: For hyperbola $S P-S^{\prime} P=2 a$
$\Rightarrow\left|z-z_{1}\right|-\left|z-z_{2}\right|=2 a$
Where $2 a \triangleleft z_{1}-z_{2} \mid \quad$ (since eccentricity >1)
Then point z describes a hyperbola having foci at z_{1} and z_{2} and $a \in R^{+}$

