
Use of Complex Numbers in Co-ordinate Geometry. 
 

(1) Distance formula:The distance between two points )( 1zP  and )( 2zQ is given by 

|| 12 zzPQ  = |affix of Q – affix of P| 

 

 

 
 

 

 

Note: The distance of point z from origin .|)00(||||0| izzz   Thus, modulus of a complex 

number z represented by a point in the argand plane is its distance from the origin. 

Three points )(),( 21 zBzA  and )( 3zC  are collinear then ACBCAB   

i.e., |||||| 313221 zzzzzz  . 

 

 
(2) Section formula:If R(z) divides the joining of )( 1zP  and )( 2zQ  in the ratio 

)0,(: 2121 mmmm  

(i) If R(z) divides the segment PQ internally in the ratio of 21 : mm  then 
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(ii) If R(z) divides the segment PQ externally in the ratio of 21 : mm  

then
21

1221

mm

zmzm
z




  

 

 

 

 

 

 

 

Note:   If R(z) is the midpoint of PQ then affix of R is 
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If 321 ,, zzz  are affixes of the vertices of a triangle, then affix of its centroid is .
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(3) Equation of the perpendicular bisector:If )( 1zP  and )( 2zQ are two fixed points and )(zR  is 

moving point such that it is always at equal distance from )( 1zP  and )( 2zQ  

i.e., PR = or |||| 21 zzzz   
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 )()())(( 2211 zzzzzzzz   

 )()()()( 2211 zzzzzzzz   

 z 22112121 )()( zzzzzzzzzz    2
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Hence, z lies on the perpendicular bisector of 1z and 2z . 

 

 

(4) Equation of a straight line 

(i) Parametric form: Equation of a straight line joining the point having affixes 1z  and 2z  is 

Rtztztz  when,)1( 21  

 
(ii) Non parametric form: Equation of a straight line joining the points having affixes 1z  and 2z  

is 0
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 0)()( 12212121  zzzzzzzzzz . 

Note:  Three points 21, zz  and 3z  are collinear 0
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(iii) General equation of a straight line: The general equation of a straight line is of the form
0 bzaza , where a is complex number and b is real number. 

 

(iv) Slope of a line: The complex slope of the line 0 bzaza  is 
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slope of the line 0 bzaza is 
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Note: If 1  and 2  are the are the complex slopes of two lines on the argand plane, then 
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(i) If lines are perpendicular then 021   (ii) If lines are parallel then 21    

If lines 0 bzaza  and 0111  bzaza  are the perpendicular or parallel,  then
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numbers  and ., 1 Rbb   

 
(v) Slope of the line segment joining two points: If )( 1zA  and )( 2zB  represent two points in 

the argand plane then the complex slope of AB is defined by 
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Note:  If three points )(),(),( 321 zCzBzA  are collinear then slope of   AB = slope of 

BC = slope of AC 
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(vi) Length of perpendicular: The length of perpendicular from a point 1z  to the line 

0 bzaza  is given by 
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(5) Equation of a circle: The equation of a circle whose centre is at point having affix oz  and 

radius r is rzz o  ||  

 
Note:  If the centre of the circle is at origin and radius r, then its equation is rz || . 

rzz  || 0 represents interior of a circle rzz  || 0  and rzz  || 0  represent 

exterior of the circle rzz o  || . Similarly, rzz  || 0 is the set of all points lying 

outside the circle and rzz  || 0  is the set of all points lying outside and on the circle 

.|| 0 rzz   

 

 

 

 

(i) General equation of a circle: The general equation of the circle is 0 bzazazz  where 
a is complex number and Rb  . 
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 Centre and radius are – a and ba 2||  respectively. 

 
Note:  Rule to find the center and radius of a circle whose equation is given: 

 

 Make the coefficient of zz  equal to 1 and right hand side equal to zero. 

  The center of circle will be = – a zofcoefficent  

  Radius termconstant|| 2  a  

 

(ii) Equation of circle through three non-collinear points: Let )(),(),( 321 zCzBzA  are three 

points on the circle and )(zP  be any point on the circle, then APBACB   

Using coni method 
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From (i) and (ii) we get 
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(iii) Equation of circle in diametric form: If end points of diameter represented by )( 1zA  and 

)( 2zB and )(zP  be any point on circle then, 0))(()()( 1221  zzzzzzzz  

Which is required equation of circle in diametric form. 

 

(iv) Other forms of circle:(a) Equation of all circle which are orthogonal to 11 || rzz  and

22 || rzz  .     Let the circle be || z = r cut given circles orthogonally 
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on solving 2
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(b) 
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 = k is a circle if 1k  and a line if k = 1. 

(c) The equation ,|||| 2
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(6) Equation of parabola:Now for parabola PMSP   
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Where Ra  (focus) 

Directrix is 02  azz  

 

(7) Equation of ellipse: For ellipse aPSSP 2'   
 azzzz 2|||| 21   

Where ||2 21 zza    (since eccentricity <1) 

Then point z describes an ellipse having foci at 1z  and 2z and  Ra . 

 

(8) Equation of hyperbola: For hyperbola  aPSSP 2'   
 azzzz 2|||| 21   

Where ||2 21 zza    (since eccentricity >1) 

Then point z describes a hyperbola having foci at 1z  and 2z and  Ra  
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