Rotation Theorem

Rotational theorem i.e., angle between two intersecting lines. This is also known as coni method.
Let z,,z, and z, be the affixes of three points A, B and C respectively taken on argand plane.

Then we have AC =z, —z, and AB = Z, -z,
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and let arg AC =arg(z, ~z,)=0 and 4B =arg(z, ~z,)= ¢ e
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For any complex number z we have z = z| ¢
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Note: Here only principal values of the arguments are considered.
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follows that if —L—=2

is real, then the points A, B, C, D are collinear.
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purely imaginary. It follows that if z;, —z, = £ k(z3 -z, ) where k purely imaginary

number, then AB and CD are perpendicular to each other.

(1) Complex number as a rotating arrow in the argand plane: Let z = r(cos @ + isin@) = re”

...(i) r.e" be a complex number representing a point P in the argand plane.
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Now consider complex number z, = ze

orz, =re”.e" = re'?*?) {from ()} 4




Clearly the complex number z, represents a point Q in the argand plane, when OQ =rand
Z00X =0+¢.

Clearly multiplication of z with e” rotates the vector oP through angle ¢ in anticlockwise

sense.

Similarly multiplication of z with e ™ will rotate the vector OP in clockwise sense.

Note: If z,,z, and z, are the affixes of the points A,B and C such that AC = 4B and ZLCAB =6.

Therefore, AB = Z, —Zy, AC = Zy —Zz).
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Then AC will be obtained by rotating AB through an angle 6 in anticlockwise b
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sense, and therefore, o
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If A, B and C are three points in argand plane such that AC = 4B and ZCAB = @ then use the
rotation about A to find e”, but if AC # 4B use coni method.
Let z,and z, be two complex numbers represented by point P and Q in the argand plane such
N i0
that ZPOQ = 6. Then, z,e”is a vector of magnitude | z, | = OP along OQ and 21 is a unit
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vector along 0Q. Consequently, | z,| .= | is a vector of magnitude | z,|= OQ along OQ i.e,
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(2) Condition for four points to be noncyclic:If points AB,C and D are concyclic
L ABD = Z ACD
Using rotation theorem
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From (i) and (ii)
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So ifz,,z,,z, and z, are such that 21 =75)(4 ~25)

is real, then these four points are concyclic.
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