Rotation Theorem.

Rotational theorem i.e., angle between two intersecting lines. This is also known as coni method. Let z_{1}, z_{2} and z_{3} be the affixes of three points A, B and C respectively taken on argand plane.
Then we have $\overrightarrow{A C}=z_{3}-z_{1}$ and $\overrightarrow{A B}=z_{2}-z_{1}$
and let $\arg \overrightarrow{A C}=\arg \left(z_{3}-z_{1}\right)=\theta$ and $\overrightarrow{A B}=\arg \left(z_{2}-z_{1}\right)=\phi$
Let $\angle C A B=\alpha, \because \angle C A B=\alpha=\theta-\phi$
$=\arg \overrightarrow{A C}-\arg \overrightarrow{A B}=\arg \left(z_{3}-z_{1}\right)-\arg \left(z_{2}-z_{1}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$

or angle between $A C$ and $A B=\arg \left(\frac{\operatorname{affix} \text { of } C-\operatorname{affix} \text { of } A}{\operatorname{affix} \text { of } B-\operatorname{affix} \text { of } A}\right)$
For any complex number z we have $z \neq z \mid e^{i(a r g z)}$
Similarly, $\left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\left|\left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)\right| e^{i\left(\arg \frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)}$ or $\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\frac{\left|z_{3}-z_{1}\right|}{\left|z_{2}-z_{1}\right|} e^{i(\angle C A B)}=\frac{A C}{A B} e^{i \alpha}$

Note: Here only principal values of the arguments are considered.
$\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{4}}\right)=\theta$, if AB coincides with CD , then $\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{4}}\right)=0$ or $\pm \pi$, so that $\frac{z_{1}-z_{2}}{z_{3}-z_{4}}$ is real. It
follows that if $\frac{z_{1}-z_{2}}{z_{3}-z_{4}}$ is real, then the points A, B, C, D are collinear.
If $A B$ is perpendicular to $C D$, then $\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{4}}\right)= \pm \pi / 2, \quad$ so $\frac{z_{1}-z_{2}}{z_{3}-z_{4}}$ is purely imaginary. It follows that if $z_{1}-z_{2}= \pm k\left(z_{3}-z_{4}\right)$, where k purely imaginary
 number, then $A B$ and $C D$ are perpendicular to each other.
(1) Complex number as a rotating arrow in the argand plane: Let $z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$
.....(i) $r . e^{i \theta}$ be a complex number representing a point P in the argand plane.

Then $O P \neq z \mid=r$ and $\angle P O X=\theta$
Now consider complex number $z_{1}=z e^{i \phi}$
or $z_{1}=r e^{i \theta} \cdot e^{i \phi}=r e^{i(\theta+\phi)} \quad$ \{from (i)\}

Clearly the complex number z_{1} represents a point Q in the argand plane, when $O Q=r$ and $\angle Q O X=\theta+\phi$.

Clearly multiplication of z with $e^{i \phi}$ rotates the vector $\overrightarrow{O P}$ through angle ϕ in anticlockwise sense.

Similarly multiplication of z with $e^{-i \phi}$ will rotate the vector $\overrightarrow{O P}$ in clockwise sense.

Note: If z_{1}, z_{2} and z_{3} are the affixes of the points A, B and C such that $A C=A B$ and $\angle C A B=\theta$.
Therefore, $\overrightarrow{A B}=z_{2}-z_{1}, \overrightarrow{A C}=z_{3}-z_{1}$.

Then $\overrightarrow{A C}$ will be obtained by rotating $\overrightarrow{A B}$ through an angle θ in anticlockwise sense, and therefore,
$\overrightarrow{A C}=\overrightarrow{A B} e^{i \theta}$ or $\left(z_{3}-z_{1}\right)=\left(z_{2}-z_{1}\right) e^{i \theta}$ or $\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=e^{i \theta}$

If A, B and C are three points in argand plane such that $A C=A B$ and $\angle C A B=\theta$ then use the rotation about A to find $e^{i \theta}$, but if $A C \neq A B$ use coni method.

Let z_{1} and z_{2} be two complex numbers represented by point P and Q in the argand plane such that $\angle P O Q=\theta$. Then, $z_{1} e^{i \theta}$ is a vector of magnitude $\left|z_{1}\right|=O P$ along $\overrightarrow{O Q}$ and $\frac{z_{1} e^{i \theta}}{\left|z_{1}\right|}$ is a unit vector along $\overrightarrow{O Q}$. Consequently, $\left|z_{2}\right| \cdot \frac{z_{1} e^{i \theta}}{\left|z_{1}\right|}$ is a vector of magnitude $\left|z_{2}\right|=O Q$ along $O Q$ i.e., $z_{2}=\frac{\left|z_{2}\right|}{\left|z_{1}\right|} \cdot z_{1} e^{i \theta}=z_{2}=\left|\frac{z_{2}}{z_{1}}\right|$.
(2) Condition for four points to be noncyclic:If points A, B, C and D are concyclic $\angle A B D=\angle A C D$

Using rotation theorem
In $\triangle A B D \frac{\left(z_{1}-z_{2}\right)}{\left|z_{1}-z_{2}\right|}=\frac{z_{4}-z_{2}}{\left|z_{4}-z_{2}\right|} e^{i \theta}$
In $\triangle A C D \frac{\left(z_{1}-z_{3}\right)}{\left|z_{1}-z_{3}\right|}=\frac{z_{4}-z_{3}}{\left|z_{4}-z_{3}\right|} e^{i \theta}$
From (i) and (ii)

$$
\frac{\left(z_{1}-z_{2}\right)}{\left|z_{1}-z_{3}\right|} \frac{\left(z_{4}-z_{3}\right)}{\left|z_{4}-z_{2}\right|}=\left|\frac{\left(z_{1}-z_{2}\right)\left(z_{4}-z_{3}\right)}{\left(z_{1}-z_{3}\right)\left(z_{4}-z_{2}\right)}\right|=\text { Real }
$$

So if z_{1}, z_{2}, z_{3} and z_{4} are such that $\frac{\left(z_{1}-z_{2}\right)\left(z_{4}-z_{3}\right)}{\left(z_{1}-z_{3}\right)\left(z_{4}-z_{2}\right)}$ is real, then these four points are concyclic.

