Rotation Theorem.

Rotational theorem i.e., angle between two intersecting lines. This is also known as coni method. Let z_1, z_2 and z_3 be the affixes of three points A, B and C respectively taken on argand plane.

Then we have $\overrightarrow{AC} = z_3 - z_1$ and $\overrightarrow{AB} = z_2 - z_1$ and let $\arg \overrightarrow{AC} = \arg(z_3 - z_1) = \theta$ and $\overrightarrow{AB} = \arg(z_2 - z_1) = \phi$ Let $\angle CAB = \alpha$, $\because \angle CAB = \alpha = \theta - \phi$

= arg
$$\overrightarrow{AC}$$
 - arg \overrightarrow{AB} = arg $(z_3 - z_1)$ - arg $(z_2 - z_1)$ = arg $\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$

or angle between AC and AB = $\arg\left(\frac{\operatorname{affix} of C - \operatorname{affix} of A}{\operatorname{affix} of B - \operatorname{affix} of A}\right)$

For any complex number z we have $z \neq z \mid e^{i(argz)}$

Similarly,
$$\left(\frac{z_3 - z_1}{z_2 - z_1}\right) = \left| \left(\frac{z_3 - z_1}{z_2 - z_1}\right) \right| e^{i\left(arg\frac{z_3 - z_1}{z_2 - z_1}\right)}$$
 or $\frac{z_3 - z_1}{z_2 - z_1} = \frac{|z_3 - z_1|}{|z_2 - z_1|} e^{i(\angle CAB)} = \frac{AC}{AB} e^{i\alpha}$

Note: Here only principal values of the arguments are considered.

 $\arg\left(\frac{z_1 - z_2}{z_3 - z_4}\right) = \theta \text{ , if AB coincides with CD, then } \arg\left(\frac{z_1 - z_2}{z_3 - z_4}\right) = 0 \text{ or } \pm \pi \text{ , so that } \frac{z_1 - z_2}{z_3 - z_4} \text{ is real. It}$

follows that if $\frac{z_1 - z_2}{z_3 - z_4}$ is real, then the points A, B, C, D are collinear.

If AB is perpendicular to CD, then $\arg\left(\frac{z_1 - z_2}{z_3 - z_4}\right) = \pm \pi / 2$, so $\frac{z_1 - z_2}{z_3 - z_4}$ is

purely imaginary. It follows that if $z_1 - z_2 = \pm k(z_3 - z_4)$, where k purely imaginary number, then AB and CD are perpendicular to each other.

 $A \xrightarrow{S(z_4)} \theta \\ R(z_3) B$

(1) Complex number as a rotating arrow in the argand plane: Let $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$

.....(i) $r.e^{i\theta}$ be a complex number representing a point P in the argand plane.

Then $OP \Rightarrow |z| = r$ and $\angle POX = \theta$ Now consider complex number $z_1 = ze^{i\phi}$ or $z_1 = re^{i\theta} \cdot e^{i\phi} = re^{i(\theta + \phi)}$ {from (i)}

Clearly the complex number z_1 represents a point Q in the argand plane, when OQ = r and $\angle QOX = \theta + \phi$.

Clearly multiplication of z with $e^{i\phi}$ rotates the vector \overrightarrow{OP} through angle ϕ in anticlockwise sense.

Similarly multiplication of z with $e^{-i\phi}$ will rotate the vector \overrightarrow{OP} in clockwise sense.

Note: If z_1, z_2 and z_3 are the affixes of the points A,B and C such that AC = AB and $\angle CAB = \theta$. Therefore, $\overrightarrow{AB} = z_2 - z_1$, $\overrightarrow{AC} = z_3 - z_1$.

Then \overrightarrow{AC} will be obtained by rotating \overrightarrow{AB} through an angle θ in anticlockwise sense, and therefore,

$$\overrightarrow{AC} = \overrightarrow{AB} e^{i\theta} \operatorname{or} (z_3 - z_1) = (z_2 - z_1)e^{i\theta} \operatorname{or} \frac{z_3 - z_1}{z_2 - z_1} = e^{i\theta}$$

If A, B and C are three points in argand plane such that AC = AB and $\angle CAB = \theta$ then use the rotation about A to find $e^{i\theta}$, but if $AC \neq AB$ use conimethod.

Let z_1 and z_2 be two complex numbers represented by point P and Q in the argand plane such that $\angle POQ = \theta$. Then, $z_1 e^{i\theta}$ is a vector of magnitude $|z_1| = OP$ along \overrightarrow{OQ} and $\frac{z_1 e^{i\theta}}{|z_1|}$ is a unit vector along \overrightarrow{OQ} . Consequently, $|z_2| \cdot \frac{z_1 e^{i\theta}}{|z_1|}$ is a vector of magnitude $|z_2| = OQ$ along OQ i.e., $z_2 = \frac{|z_2|}{|z_1|} \cdot z_1 e^{i\theta} = z_2 = \frac{|z_2|}{|z_1|}$.

(2) **Condition for four points to be noncyclic:** If points A,B,C and D are concyclic $\angle ABD = \angle ACD$

Using rotation theorem

In
$$\Delta ABD \frac{(z_1 - z_2)}{|z_1 - z_2|} = \frac{z_4 - z_2}{|z_4 - z_2|} e^{i\theta}$$
(i)
In $\Delta ACD \frac{(z_1 - z_3)}{|z_1 - z_3|} = \frac{z_4 - z_3}{|z_4 - z_3|} e^{i\theta}$ (ii)

From (i) and (ii)

 $\frac{(z_1 - z_2)}{|z_1 - z_3|} \frac{(z_4 - z_3)}{|z_4 - z_2|} = \frac{|(z_1 - z_2)(z_4 - z_3)|}{|(z_1 - z_3)(z_4 - z_2)|} = \text{Real}$

So if z_1, z_2, z_3 and z_4 are such that $\frac{(z_1 - z_2)(z_4 - z_3)}{(z_1 - z_3)(z_4 - z_2)}$ is real, then these four points are concyclic.