
Rotation Theorem. 
 

Rotational theorem i.e., angle between two intersecting lines. This is also known as coni method. 

Let 21 , zz  and 3z  be the affixes of three points A, B and C respectively taken on argand plane. 

Then we have 13 zzAC   and AB  = 12 zz   
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Note:  Here only principal values of the arguments are considered. 
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follows that if 
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 is real, then the points A, B, C, D are collinear. 

If AB is perpendicular to CD, then arg 2/
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purely imaginary. It follows that if 21 zz  =  43 zzk  , where k purely imaginary 

number, then AB and CD are perpendicular to each other. 

 

(1) Complex number as a rotating arrow in the argand plane: Let    ireirz  sincos   

..…(i) ier.  be a complex number representing a point P in the argand plane. 

 

Then rzOP  ||  and POX  

Now consider complex number izez 1  

or    iii reerez .1  {from (i)} 
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Clearly the complex number 1z  represents a point Q in the argand plane, when  rOQ  and 

 QOX . 

 

Clearly multiplication of z with ie  rotates the vector OP  through angle   in anticlockwise 

sense.  

Similarly multiplication of z with ie   will rotate the vector OP  in clockwise sense. 

 

Note:  If 21 , zz  and 3z  are the affixes of the points A,B and C such that ABAC   and CAB . 

Therefore, 1312 , zzACzzAB  . 

 

Then AC  will be obtained by rotating AB  through an angle  in anticlockwise 
sense, and therefore, 
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If A, B and C are three points in argand plane such that ABAC   and CAB  then use the 

rotation about A to find ie , but if ABAC    use coni method. 

 

Let 1z and 2z  be two complex numbers represented by point P and Q in the argand plane such 

that .POQ  Then, iez1 is a vector of magnitude OPz || 1  along OQ  and 
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(2) Condition for four points to be noncyclic:If points A,B,C and D are concyclic 
ACDABD   

Using rotation theorem 
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So  if 321 ,, zzz  and 4z are such that 
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