Standard Loci in the Argand Plane.

(1) If z is a variable point in the argand plane such that $\arg (z)=\theta$, then locus of z is a straight line (excluding origin) through the origin inclined at an angle θ with x -axis.
(2) If z is a variable point and z_{1} is a fixed point in the argand plane such that $\arg \left(z-z_{1}\right)=\theta$, then locus of z is a straight line passing through the point representing z_{1} and inclined at an angle θ with x-axis. Note that the point z_{1} is excluded from the locus.
(3) If z is a variable point and z_{1}, z_{2} are two fixed points in the argand plane, then
(i) $\left|z-z_{1}\right| \neq z-z_{2} \mid \quad \Rightarrow \quad$ Locus of z is the perpendicular bisector of the line segment joining z_{1} and z_{2}
(ii) $\left|z-z_{1}\right|+\left|z-z_{2}\right|=$ constant $\left(\neq\left|z_{1}-z_{2}\right|\right) \quad \Rightarrow \quad$ Locus of z is an ellipse
(iii) $\left|z-z_{1}\right|+\left|z-z_{2}\right| \neq z_{1}-z_{2} \mid \quad \Rightarrow \quad$ Locus of z is the line segment joining z_{1} and z_{2}
(iv) $\left|z-z_{1}\right|-\left|z-z_{2}\right| \neq\left|z_{1}-z_{2}\right| \quad \Rightarrow \quad$ Locus of z is a straight line joining z_{1} and z_{2} but z does not lie between z_{1} and z_{2}.
(v) $\left|z-z_{1}\right|-\left|z-z_{2}\right|=$ constant $\quad\left(\nexists z_{1}-z_{2} \mid\right) \quad \Rightarrow \quad$ Locus of z is a hyperbola.
(vi) $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right| \quad \Rightarrow \quad$ Locus of z is a circle with z_{1} and z_{2} as the extremities of diameter.
(vii) $\left|z-z_{1}\right|=k\left|z-z_{2}\right| k \neq 1 \quad \Rightarrow \quad$ Locus of z is a circle.
(viii) $\arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=\alpha$ (fixed) $\quad \Rightarrow \quad$ Locus of z is a segment of circle.
(ix) $\arg \left(\frac{z-z_{1}}{z-z_{2}}\right)= \pm \pi / 2 \quad \Rightarrow \quad$ Locus of z is a circle with z_{1} and z_{2} as the vertices of
diameter.
(x) $\arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=0$ or $\pi \quad \Rightarrow \quad$ Locus z is a straight line passing through z_{1} and z_{2}.
(xi) The equation of the line joining complex numbers z_{1} and z_{2} is given by $\frac{z-z_{1}}{z_{2}-z_{1}}=\frac{\bar{z}-\bar{z}_{1}}{\bar{z}_{2}-\bar{z}_{1}}$ or $\left|\begin{array}{ccc}z & \bar{z} & 1 \\ z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1\end{array}\right|=0$

