Standard Loci in the Argand Plane.

(1) If z is a variable point in the argand plane such that $\arg(z) = \theta$, then locus of z is a straight line (excluding origin) through the origin inclined at an angle θ with x-axis.

(2) If z is a variable point and z_1 is a fixed point in the argand plane such that $\arg(z - z_1) = \theta$, then locus of z is a straight line passing through the point representing z_1 and inclined at an angle θ with x-axis. Note that the point z_1 is excluded from the locus.

(3) If z is a variable point and z_1, z_2 are two fixed points in the argand plane, then

(i) $|z - z_1| \neq |z - z_2|$ Locus of z is the perpendicular bisector of \Rightarrow the line segment joining z_1 and z_2 (ii) $|z - z_1| + |z - z_2| = \text{constant} (\neq |z_1 - z_2|)$ Locus of z is an ellipse \Rightarrow (iii) $|z - z_1| + |z - z_2| \neq |z_1 - z_2|$ Locus of z is the line segment joining \Rightarrow z_1 and z_2 (iv) $|z - z_1| - |z - z_2| \neq |z_1 - |z_2|$ Locus of z is a straight line joining z_1 and \Rightarrow z_2 but z does not lie between z_1 and z_2 . (v) $|z - z_1| - |z - z_2| = \text{constant} \quad (\neq z_1 - z_2)$ \Rightarrow Locus of z is a hyperbola. (vi) $|z-z_1|^2 + |z-z_2|^2 = |z_1-z_2|$ Locus of z is a circle with z_1 and z_2 as the \Rightarrow extremities of diameter. (vii) $|z - z_1| = k |z - z_2| k \neq 1$ Locus of z is a circle. \Rightarrow (viii) $\arg\left(\frac{z-z_1}{z-z_2}\right) = \alpha$ (fixed) Locus of z is a segment of circle. \Rightarrow

(ix)
$$\arg\left(\frac{z-z_1}{z-z_2}\right) = \pm \pi/2$$
 \Rightarrow Locus of z is a circle with z_1 and z_2 as the

vertices of diameter.

(x)
$$\arg\left(\frac{z-z_1}{z-z_2}\right) = 0$$
 or $\pi \implies \text{Locus z is a straight line passing through } z_1$
and z_2 .

(xi) The equation of the line joining complex numbers z_1 and z_2 is given by $\frac{z-z_1}{z_2-z_1} = \frac{\overline{z}-\overline{z}_1}{\overline{z}_2-\overline{z}_1}$ or

 $\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix} = 0$