Roots of a Complex Number.

(1) **nth roots of complex number** $(z^{1/n})$: Let $z = r(\cos + i \sin \theta)$ be a complex number. To find the roots of a complex number, first we express it in polar form with the general value of its amplitude and use the De' Moivre's theorem. By using De'moivre's theorem nth roots having n distinct values of such a complex number are given by

 $z^{1/n} = r^{1/n} \left[\cos \frac{2m\pi + \theta}{n} + i \sin \frac{2m\pi + \theta}{n} \right]$, where m = 0, 1, 2, ..., (n-1).

Properties of the roots of $z^{1/n}$:

- (i) All roots of $z^{1/n}$ are in geometrical progression with common ratio $e^{2\pi i/n}$.
- (ii) Sum of all roots of $z^{1/n}$ is always equal to zero.
- (iii) Product of all roots of $z^{1/n} = (-1)^{n-1} z$.
- (iv) Modulus of all roots of $z^{1/n}$ are equal and each equal to $r^{1/n}$ or $|z|^{1/n}$.

(v) Amplitude of all the roots of $z^{1/n}$ are in A.P. with common difference $\frac{2\pi}{n}$.

(vi) All roots of $z^{1/n}$ lies on the circumference of a circle whose center is origin and radius equal to $|z|^{1/n}$. Also these roots divides the circle into n equal parts and forms a polygon of n sides.

(2) **The nth roots of unity:**The nth roots of unity are given by the solution set of the equation $x^n = 1 = \cos 0 + i \sin 0 = \cos 2k\pi + i \sin 2k\pi$ $x = [\cos 2k\pi + i \sin 2k\pi]^{1/n}$ $x = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$, where k = 0, 1, 2,, (n-1).

Properties of nth roots of unity

(i) Let $\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} = e^{i(2\pi/n)}$, the nth roots of unity can be expressed in the form of a series i.e., $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$. Clearly the series is G.P. with common difference α i.e., $e^{i(2\pi/n)}$. (ii) The sum of all n roots of unity is zero i.e., $1 + \alpha + \alpha^2 + \dots + \alpha^{n-1} = 0$. (iii) Product of all n roots of unity is $(-1)^{n-1}$. (iv) Sum of pth power of n roots of unity

$$1 + \alpha^{p} + \alpha^{2p} + \dots + \alpha^{(n-1)p} = \begin{cases} 0, \text{ when } p \text{ is not multiple of } n \\ n, \text{ when } p \text{ is a multiple of } n \end{cases}$$

(v) The n, nth roots of unity if represented on a complex plane locate their positions at the vertices of a regular plane polygon of n sides inscribed in a unit circle having centre at origin, one vertex on positive real axis.

Note:
$$x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$$

 $(\sin \theta + i \cos \theta) = -i^2 \sin \theta + i \cos \theta = i(\cos \theta - i \sin \theta)$

(3) **Cube roots of unity:**Cube roots of unity are the solution set of the equation $x^3 - 1 = 0 \Rightarrow x = (1)^{1/3} \Rightarrow x = (\cos 0 + i \sin 0)^{1/3} \Rightarrow x = \cos \frac{2k\pi}{3} + i \sin \left(\frac{2k\pi}{3}\right)$, where k = 0,1,2Therefore roots are $1, \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}, \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ or $1, e^{2\pi i/3}, e^{4\pi i/3}$. **Alternative:** $x = (1)^{1/3} \Rightarrow x^3 - 1 = 0 \Rightarrow (x - 1)(x^2 + x + 1) = 0$ $x = 1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}$

If one of the complex roots is ω , then other root will be ω^2 or vice-versa.

Properties of cube roots of unity

- (i) $1 + \omega + \omega^2 = 0$ (ii) $\omega^3 = 1$ (iii) $1 + \omega^r + \omega^{2r} = \begin{cases} 0, \text{ if } r \text{ not a multiple of } 3 \\ 3, \text{ if } r \text{ is a multiple of } 3 \end{cases}$
- (iv) $\overline{\omega} = \omega^2 \operatorname{and} (\overline{\omega})^2 = \omega \operatorname{and} \omega . \overline{\omega} = \omega^3$.
- (v) Cube roots of unity from a G.P.
- (vi) Imaginary cube roots of unity are square of each other i.e., $(\omega)^2 = \omega^2$ and $(\omega^2)^2 = \omega^3$. $\omega = \omega$.
- (vii) Imaginary cube roots of unity are reciprocal to each other i.e., $\frac{1}{\omega} = \omega^2$ and $\frac{1}{\omega^2} = \omega$.

(viii) The cube roots of unity by, when represented on complex plane, lie on vertices of an equilateral triangle inscribed in a unit circle having centre at origin, one vertex being on positive real axis.

(ix) A complex number a + ib, for which $|a:b| = 1:\sqrt{3}$ or $\sqrt{3}:1$, can always be expressed in terms of i, ω, ω^2 .

Note: If $\omega = \frac{-1 + i\sqrt{3}}{2} = e^{2\pi i/3}$, then $\omega^2 = \frac{-1 - i\sqrt{3}}{2} = e^{-4\pi i/3} = e^{-2\pi i/3}$ or vice-versa $\omega \cdot \overline{\omega} = \omega^3$. $a + b\omega + c\omega^2 = 0 \Rightarrow a = b = c$, if a, b, c are real. Cube root of -1 are $-1, -\omega, -\omega^2$.

Important Tips

 $x^{2} + x + 1 = (x - \omega)(x - \omega^{2})$ $x^{2} + xy + y^{2} = (x - y\omega)(x - y\omega^{2})$ $x^{2} + y^{2} = (x + iy)(x - iy)$ $x^{3} - y^{3} = (x - y)(x - y\omega)(x - y\omega^{2})$ $x^{2} + y^{2} + z^{2} - xy - yz - zx = (x + y\omega + z\omega^{2})(x + y\omega^{2} + z\omega)$ $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x + \omega y + \omega^{2}z)(x + \omega^{2}y + \omega z)$

 $\mathbf{F} x^{2} - x + 1 = (x + \omega)(x + \omega^{2})$ $\mathbf{F} x^{2} - xy + y^{2} = (x + y\omega)(x + y\omega^{2})$ $\mathbf{F} x^{3} + y^{3} = (x + y)(x + y\omega)(x + y\omega^{2})$ \mathbf{F}

Fourth roots of unity:The four, fourth roots of unity are given by the solution set of the equation $x^4 - 1 = 0$. $\Rightarrow (x^2 - 1)(x^2 + 1) = 0 \Rightarrow x = \pm 1, \pm i$

Note: Sum of roots = 0 and product of roots =-1. Fourth roots of unity are vertices of a square which lies on coordinate axes.

Continued product of the roots

If $z = r(\cos \theta + i \sin \theta)$ i.e., |z| = r and $amp(z) = \theta$ then continued product of roots of $z^{1/n}$ is

=
$$r(\cos\phi + i\sin\phi)$$
, where $\phi = \sum_{m=0}^{n-1} \frac{2m\pi + \theta}{n} = (n-1)\pi + \theta$.

Thus continued product of roots of

 $z^{1/n} = r[\cos\{(n-1)\pi + \theta\} + i\sin\{(n-1)\pi + \theta\}] = \begin{cases} z, \text{ if } n \text{ is odd} \\ -z, \text{ if } n \text{ is even} \end{cases}$

Similarly, the continued product of values of $z^{m/n}$ is = $\begin{cases}
z^m, & \text{if } n \text{ is odd} \\
(-z)^n, & \text{if } n \text{ is even}
\end{cases}$

Important Tips

If
$$x + \frac{1}{x} = 2\cos\theta$$
 or $x - \frac{1}{x} = 2i\sin\theta$ then
 $x = \cos\theta + i\sin\theta, \frac{1}{x} = \cos\theta - i\sin\theta, x^n + \frac{1}{x^n} = 2\cos n\theta, x^n - \frac{1}{x^n} = 2i\sin n\theta.$
If n be a positive integer then $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1}\cos\frac{n\pi}{4}$.
If z is a complex number, then e^z is periodic.
If n be a positive integer the solution of the equation $z^n + 1 = 0$
 $z^n - 1 = (z-1)(z-\alpha)(z-\alpha^2)....(z-\alpha^{n-1})$, where $\alpha = n^{th}$ root of unity
 $z^n - 1 = (z-1)(z+1)\prod_{r=1}^{(n-2)/2} (z^2 - 2z\cos\frac{2r\pi}{n} + 1)$, if n is even.
 $z^n + 1 = \begin{cases} \left(\prod_{r=0}^{(n-2)/2} \left[z^2 - 2z\cos\left(\frac{(2r+1)\pi}{n}\right) + 1\right], \text{ if } n \text{ is even.} \right] \\ (z+1)\prod_{r=0}^{(n-3)/2} \left[z^2 - 2z\cos\left(\frac{(2r+1)\pi}{n}\right) + 1\right], \text{ if } n \text{ is odd.} \end{cases}$

 \mathscr{F} If $x = \cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$, $z = \cos \gamma + i \sin \gamma$ and given, x + y + z = 0, then

(i)
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$
 (ii) $yz + zx + xy = 0$ (iii) $x^2 + y^2 + z^2 = 0$ (iv) $x^3 + y^3 + z^3 = 3xyz$

then, putting, values if x, y, z in these results

$$x + y + z = 0 \Longrightarrow \cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma \Longrightarrow yz + zx + xy = 0 \Longrightarrow$$
$$\begin{cases} \cos(\beta + \gamma) + \cos(\gamma + \alpha) + \cos(\alpha + \beta) = 0\\ \sin(\beta + \gamma) + \sin(\gamma + \alpha) + \sin(\alpha + \beta) = 0 \end{cases}$$

$$x^{2} + y^{2} + z^{2} = 0 \Longrightarrow \begin{cases} \sum \cos 2\alpha = 0 \\ \sum \sin 2\alpha = 0, \end{cases}$$
 the summation consists 3 terms

 $x^{3} + y^{3} + z^{3} = 3xyz, \text{ gives similarly}$ $\sum \cos 3\alpha = 3\cos(\alpha + \beta + \gamma) \Longrightarrow \sum \sin 3\alpha = 3\sin(\alpha + \beta + \gamma)$ If the condition given be x + y + z = xyz, then $\sum \cos \alpha = \cos(\alpha + \beta + \gamma)$ etc.