Roots of a Complex Number.

(1) $\mathbf{n}^{\text {th }}$ roots of complex number $\left(z^{1 / n}\right)$: Let $z=r(\cos +i \sin \theta)$ be a complex number. To find the roots of a complex number, first we express it in polar form with the general value of its amplitude and use the De' Moivre's theorem. By using De'moivre's theorem $\mathrm{n}^{\text {th }}$ roots having n distinct values of such a complex number are given by
$z^{1 / n}=r^{1 / n}\left[\cos \frac{2 m \pi+\theta}{n}+i \sin \frac{2 m \pi+\theta}{n}\right]$, where $m=0,1,2, \ldots \ldots,(n-1)$.

Properties of the roots of $z^{1 / n}$:

(i) All roots of $\mathrm{z}^{1 / n}$ are in geometrical progression with common ratio $e^{2 \pi i / n}$.
(ii) Sum of all roots of $z^{1 / n}$ is always equal to zero.
(iii) Product of all roots of $z^{1 / n}=(-1)^{n-1} z$.
(iv) Modulus of all roots of $z^{1 / n}$ are equal and each equal to $r^{1 / n}$ or $|z|^{1 / n}$.
(v) Amplitude of all the roots of $z^{1 / n}$ are in A.P. with common difference $\frac{2 \pi}{n}$.
(vi) All roots of $z^{1 / n}$ lies on the circumference of a circle whose center is origin and radius equal to $|z|^{1 / n}$. Also these roots divides the circle into n equal parts and forms a polygon of n sides.
(2) The $\mathbf{n}^{\text {th }}$ roots of unity:The $\mathrm{n}^{\text {th }}$ roots of unity are given by the solution set of the equation

$$
\begin{aligned}
& x^{n}=1=\cos 0+i \sin 0=\cos 2 k \pi+i \sin 2 k \pi \\
& x=[\cos 2 k \pi+i \sin 2 k \pi]^{1 / n} \\
& x=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, \text { where } k=0,1,2, \ldots \ldots,(n-1) .
\end{aligned}
$$

Properties of $\mathbf{n}^{\text {th }}$ roots of unity

(i) Let $\alpha=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}=e^{i(2 \pi / n)}$, the $n^{\text {th }}$ roots of unity can be expressed in the form of a series i.e., $1, \alpha, \alpha^{2}, \ldots . . \alpha^{n-1}$. Clearly the series is G.P. with common difference α i.e., $e^{i(2 \pi / n)}$.
(ii) The sum of all n roots of unity is zero i.e., $1+\alpha+\alpha^{2}+\ldots . .+\alpha^{n-1}=0$.
(iii) Product of all n roots of unity is $(-1)^{n-1}$.
(iv) Sum of $p^{\text {th }}$ power of n roots of unity
$1+\alpha^{p}+\alpha^{2 p}+\ldots . .+\alpha^{(n-1) p}=\left\{\begin{array}{l}0, \text { when } p \text { is not multiple of } n \\ n, \text { when } p \text { is a multiple of } n\end{array}\right.$
(v) The $n, n^{\text {th }}$ roots of unity if represented on a complex plane locate their positions at the vertices of a regular plane polygon of n sides inscribed in a unit circle having centre at origin, one vertex on positive real axis.

Note: $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\ldots . .+x+1\right)$
$(\sin \theta+i \cos \theta)=-i^{2} \sin \theta+i \cos \theta=i(\cos \theta-i \sin \theta)$
(3) Cube roots of unity:Cube roots of unity are the solution set of the equation $x^{3}-1=0 \Rightarrow$ $x=(1)^{1 / 3} \Rightarrow x=(\cos 0+i \sin 0)^{1 / 3} \Rightarrow x=\cos \frac{2 k \pi}{3}+i \sin \left(\frac{2 k \pi}{3}\right)$, where $k=0,1,2$
Therefore roots are $1, \cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}, \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$ or $1, e^{2 \pi i / 3}, e^{4 \pi i / 3}$.
Alternative: $x=(1)^{1 / 3} \Rightarrow x^{3}-1=0 \Rightarrow(x-1)\left(x^{2}+x+1\right)=0$
$x=1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}$
If one of the complex roots is ω, then other root will be ω^{2} or vice-versa.

Properties of cube roots of unity

(i) $1+\omega+\omega^{2}=0$
(ii) $\omega^{3}=1$
(iii) $1+\omega^{r}+\omega^{2 r}=\left\{\begin{array}{l}0, \text { if } r \text { not a multiple of } 3 \\ 3, \text { if } r \text { is a multiple of } 3\end{array}\right.$
(iv) $\bar{\omega}=\omega^{2}$ and $(\bar{\omega})^{2}=\omega$ and $\omega \cdot \bar{\omega}=\omega^{3}$.
(v) Cube roots of unity from a G.P.
(vi) Imaginary cube roots of unity are square of each other i.e., $(\omega)^{2}=\omega^{2}$ and $\left(\omega^{2}\right)^{2}=\omega^{3} . \omega=\omega$.
(vii) Imaginary cube roots of unity are reciprocal to each other i.e., $\frac{1}{\omega}=\omega^{2}$ and $\frac{1}{\omega^{2}}=\omega$.
(viii) The cube roots of unity by, when represented on complex plane, lie on vertices of an equilateral triangle inscribed in a unit circle having centre at origin, one vertex being on positive real axis.
(ix) A complex number $a+i b$, for which $|a: b|=1: \sqrt{3}$ or $\sqrt{3}: 1$, can always be expressed in terms of i, ω, ω^{2}.

Note: If $\omega=\frac{-1+i \sqrt{3}}{2}=e^{2 \pi i / 3}$, then $\omega^{2}=\frac{-1-i \sqrt{3}}{2}=e^{-4 \pi i / 3}=e^{-2 \pi i / 3}$ or vice-versa $\omega \cdot \bar{\omega}=\omega^{3}$. $a+b \omega+c \omega^{2}=0 \Rightarrow a=b=c$, if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real.

Cube root of -1 are $-1,-\omega,-\omega^{2}$.

Important Tips

```
\mp@subsup{x}{}{2}+x+1=(x-\omega)(x-\mp@subsup{\omega}{}{2})
\mp@subsup{x}{}{2}+xy+\mp@subsup{y}{}{2}=(x-y\omega)(x-y\mp@subsup{\omega}{}{2})\quad\mp@subsup{x}{}{2}-xy+\mp@subsup{y}{}{2}=(x+y\omega)(x+y\mp@subsup{\omega}{}{2})
```



```
\sigma}\mp@subsup{x}{}{3}-\mp@subsup{y}{}{3}=(x-y)(x-y\omega)(x-y\mp@subsup{\omega}{}{2}
\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+\mp@subsup{z}{}{2}-xy-yz-zx=(x+y\omega+z\mp@subsup{\omega}{}{2})(x+y\mp@subsup{\omega}{}{2}+z\omega)
\mp@subsup{x}{}{3}+\mp@subsup{y}{}{3}+\mp@subsup{z}{}{3}-3xyz=(x+y+z)(x+\omegay+\mp@subsup{\omega}{}{2}z)(x+\mp@subsup{\omega}{}{2}y+\omegaz)
```

Fourth roots of unity:The four, fourth roots of unity are given by the solution set of the equation $x^{4}-1=0 . \Rightarrow\left(x^{2}-1\right)\left(x^{2}+1\right)=0 \Rightarrow x= \pm 1, \pm i$

Note: Sum of roots $=0$ and product of roots $=-1$.
Fourth roots of unity are vertices of a square which lies on coordinate axes.

Continued product of the roots

If $z=r(\cos \theta+i \sin \theta)$ i.e., $|z|=r$ and $\operatorname{amp}(z)=\theta$ then continued product of roots of $z^{1 / n}$ is $=r(\cos \phi+i \sin \phi)$, where $\phi=\sum_{m=0}^{n-1} \frac{2 m \pi+\theta}{n}=(n-1) \pi+\theta$.
Thus continued product of roots of
$z^{1 / n}=r[\cos \{(n-1) \pi+\theta\}+i \sin \{(n-1) \pi+\theta\}]=\left\{\begin{array}{l}z, \text { if } n \text { is odd } \\ -z, \text { if } n \text { is even }\end{array}\right.$
Similarly, the continued product of values of $z^{m / n}$ is $= \begin{cases}z^{m}, & \text { if } n \text { is odd } \\ (-z)^{m}, & \text { if } n \text { is even }\end{cases}$

Important Tips

If $x+\frac{1}{x}=2 \cos \theta$ or $x-\frac{1}{x}=2 i \sin \theta$ then
$x=\cos \theta+i \sin \theta, \frac{1}{x}=\cos \theta-i \sin \theta, x^{n}+\frac{1}{x^{n}}=2 \cos n \theta, x^{n}-\frac{1}{x^{n}}=2 i \sin n \theta$.
©- If n be a positive integer then , $(1+i)^{n}+(1-i)^{n}=2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}$.
(-) If z is a complex number, then e^{2} is periodic.

- $\quad \mathrm{n}^{\text {th }}$ root of -1 are the solution of the equation $z^{n}+1=0$
$z^{n}-1=(z-1)(z-\alpha)\left(z-\alpha^{2}\right) \ldots . .\left(z-\alpha^{n-1}\right)$, where $\alpha=n^{\text {th }}$ root of unity
$z^{n}-1=(z-1)(z+1) \prod_{r=1}^{(n-2) / 2}\left(z^{2}-2 z \cos \frac{2 r \pi}{n}+1\right)$, if n is even.
$z^{n}+1=\left\{\begin{array}{l}\prod_{r=0}^{(n-2) / 2}\left[z^{2}-2 z \cos \left(\frac{(2 r+1) \pi}{n}\right)+1\right], \text { if } n \text { is even. } \\ (z+1) \prod_{\mathrm{r}=0}^{(n-3) 2}\left[z^{2}-2 z \cos \left(\frac{(2 r+1) \pi}{n}\right)+1\right], \text { if } n \text { is odd. }\end{array}\right.$
σ If $x=\cos \alpha+i \sin \alpha, y=\cos \beta+i \sin \beta, z=\cos \gamma+i \sin \gamma$ and given, $x+y+z=0$, then
(i) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$ (ii) $y z+z x+x y=0$ (iii) $x^{2}+y^{2}+z^{2}=0$ (iv) $x^{3}+y^{3}+z^{3}=3 x y z$
then, putting, values if x, y, z in these results

$$
\begin{aligned}
& x+y+z=0 \Rightarrow \cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma \Rightarrow y z+z x+x y=0 \Rightarrow \\
& \left\{\begin{array}{l}
\cos (\beta+\gamma)+\cos (\gamma+\alpha)+\cos (\alpha+\beta)=0 \\
\sin (\beta+\gamma)+\sin (\gamma+\alpha)+\sin (\alpha+\beta)=0
\end{array}\right. \\
& x^{2}+y^{2}+z^{2}=0 \Rightarrow\left\{\begin{array}{l}
\sum \cos 2 \alpha=0 \\
\sum \sin 2 \alpha=0,
\end{array} \text { the summation consists } 3\right. \text { terms } \\
& x^{3}+y^{3}+z^{3}=3 x y z, \text { gives similarly } \\
& \sum \cos 3 \alpha=3 \cos (\alpha+\beta+\gamma) \Rightarrow \sum \sin 3 \alpha=3 \sin (\alpha+\beta+\gamma)
\end{aligned}
$$

If the condition given be $x+y+z=x y z$, then $\sum \cos \alpha=\cos (\alpha+\beta+\gamma)$ etc.

