Introduction.

Number system consists of real numbers ($-5,7, \frac{1}{3}, \sqrt{3} \ldots$. ...etc.) and imaginary numbers ($\sqrt{-5}, \sqrt{-9} \ldots$...tc.) If we combine these two numbers by some mathematical operations, the resulting number is known as Complex Number i.e., "Complex Number is the combination of real and imaginary numbers".

(1) Basic concepts of complex number

(i) General definition: A number of the form $x+i y$, where $x, y \in R$ and $i=\sqrt{-1}$ is called a complex number so the quantity $\sqrt{-1}$ is denoted by '/ called iota thus $i=\sqrt{-1}$.

A complex number is usually denoted by z and the set of complex number is denoted by c i.e., $c=\{x+i y: x \in R, y \in R, i=\sqrt{-1}\}$

For example, $5+3 i,-1+i, 0+4 i, 4+0 i$ etc. are complex numbers.

Note: Euler was the first mathematician to introduce the symbol i (iota) for the square root of -1 with property $i^{2}=-1$. He also called this symbol as the imaginary unit.

- Iota (i) is neither 0 , nor greater than 0 , nor less than 0 .
- The square root of a negative real number is called an imaginary unit.
- For any positive real number a, we have $\sqrt{-a}=\sqrt{-1 \times a}=\sqrt{-1} \sqrt{a}=i \sqrt{a}$
- $i \sqrt{-a}=-\sqrt{a}$.
- The property $\sqrt{a} \sqrt{b}=\sqrt{a b}$ is valid only if at least one of a and b is non-negative. If a and b are both negative then $\sqrt{a} \sqrt{b}=-\sqrt{a b}$.
- If $a<0$ then $\sqrt{a}=\sqrt{a \mid i}$.
(2) Integral powers of iota (i):Since $i=\sqrt{-1}$ hence we have $i^{2}=-1, i^{3}=-i$ and $i^{4}=1$. To find the value of $i^{n}(n>4)$, first divide n by 4 . Let q be the quotient and r be the remainder.
i.e., $n=4 q+r$ where $0 \leq r \leq 3$
$i^{n}=i^{4 q+r}=\left(i^{4}\right)^{q} \cdot(i)^{r}=(1)^{q} \cdot(i)^{r}=i^{r}$
In general we have the following results $i^{4 n}=1, i^{4 n+1}=i, i^{4 n+2}=-1, i^{4 n+3}=-i$, where n is any integer.

In other words, $i^{n}=(-1)^{n / 2}$ if n is even integer and $i^{n}=(-1)^{n-1 / 2} i$ if n is odd integer.
The value of the negative integral powers of i are found as given below:
$i^{-1}=\frac{1}{i}=\frac{i^{3}}{i^{4}}=i^{3}=-i, i^{-2}=\frac{1}{i^{2}}=\frac{1}{-1}=-1, i^{-3}=\frac{1}{i^{3}}=\frac{i}{i^{4}}=\frac{i}{1}=i, i^{-4}=\frac{1}{i^{4}}=\frac{1}{1}=1$

Important Tips

The sum of four consecutive powers of i is always zero i.e., $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=0, n \in I$.
$\sigma i^{n}=1, i,-1,-i$, where n is any integer.
$\sigma(1+i)^{2}=2 i,(1-i)^{2}=-2 i$
$\sigma-\frac{1+i}{1-i}=i, \frac{1-i}{1+i}=-i, \frac{2 i}{i-1}=1-i$

