Introduction.

Number system consists of real numbers $(-5,7,\frac{1}{3},\sqrt{3}....etc.)$ and imaginary numbers $(\sqrt{-5},\sqrt{-9}...etc.)$ If we combine these two numbers by some mathematical operations, the resulting number is known as Complex Number *i.e.*, "Complex Number is the combination of real and imaginary numbers".

(1) Basic concepts of complex number

(i) **General definition:** A number of the form x + iy, where $x, y \in R$ and $i = \sqrt{-1}$ is called a complex number so the quantity $\sqrt{-1}$ is denoted by '*i* called iota thus $i = \sqrt{-1}$.

A complex number is usually denoted by z and the set of complex number is denoted by c

i.e., $c = \{x + iy : x \in R, y \in R, i = \sqrt{-1}\}$

For example, 5 + 3i, -1 + i, 0 + 4i, 4 + 0i etc. are complex numbers.

Note: Euler was the first mathematician to introduce the symbol i (iota) for the square root of – 1 with property $i^2 = -1$. He also called this symbol as the imaginary unit.

- Iota (i) is neither 0, nor greater than 0, nor less than 0.
- The square root of a negative real number is called an imaginary unit.
- **C** For any positive real number a, we have $\sqrt{-a} = \sqrt{-1 \times a} = \sqrt{-1} \sqrt{a} = i \sqrt{a}$

$$\Box \quad i\sqrt{-a} = -\sqrt{a}.$$

The property $\sqrt{a}\sqrt{b} = \sqrt{ab}$ is valid only if at least one of a and b is non-negative. If a and b are both negative then $\sqrt{a}\sqrt{b} = -\sqrt{ab}$.

If
$$a < 0$$
 then $\sqrt{a} = \sqrt{|a||i|}$.

(2) **Integral powers of iota (i):**Since $i = \sqrt{-1}$ hence we have $i^2 = -1$, $i^3 = -i$ and $i^4 = 1$. To find the value of i^n (n > 4), first divide n by 4. Let q be the quotient and r be the remainder.

i.e., n = 4q + r where $0 \le r \le 3$

 $i^{n} = i^{4q+r} = (i^{4})^{q} . (i)^{r} = (1)^{q} . (i)^{r} = i^{r}$

In general we have the following results $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$, where n is any integer.

In other words, $i^n = (-1)^{n/2}$ if n is even integer and $i^n = (-1)^{n-1/2}i$ if n is odd integer.

The value of the negative integral powers of i are found as given below:

$$i^{-1} = \frac{1}{i} = \frac{i^3}{i^4} = i^3 = -i, i^{-2} = \frac{1}{i^2} = \frac{1}{-1} = -1, i^{-3} = \frac{1}{i^3} = \frac{i}{i^4} = \frac{i}{1} = i, i^{-4} = \frac{1}{i^4} = \frac{1}{1} = 1$$

Important Tips

The sum of four consecutive powers of i is always zero i.e., $i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0, n \in I$. $\mathcal{F}_i^n = 1, i, -1, -i$, where n is any integer. $\mathcal{F}_i^n (1+i)^2 = 2i, (1-i)^2 = -2i$

$$\mathcal{F} \frac{1+i}{1-i} = i, \ \frac{1-i}{1+i} = -i, \ \frac{2i}{i-1} = 1-i$$