Dot and Cross Product.

Let $z_1 = a_1 + ib_1 = (a_1, b_1)$ and $z_2 = a_2 + ib_2 = (a_2, b_2)$ be two complex numbers. If $\angle POQ = \theta$ then from coni method $\frac{z_2 - 0}{z_1 - 0} = \frac{|z_2|}{|z_1|} e^{i\theta}$ $\Rightarrow \frac{z_2 \overline{z}_1}{z_1 \overline{z}_1} = \frac{|z_2|}{|z_1|} e^{i\theta} \Rightarrow \frac{z_2 \overline{z}_1}{|z_1|^2} = \frac{|z_2|}{|z_1|} e^{i\theta} \Rightarrow z_2 \overline{z}_1 \neq z_1 \parallel z_2 \mid e^{i\theta}$ $\Rightarrow z_2 \overline{z}_1 \neq z_1 \parallel z_2 \mid \cos \theta \quad \dots.(i)$ and $\operatorname{Im}(z_2 \overline{z}_1) \neq z_1 \parallel z_2 \mid \sin \theta \quad \dots.(ii)$ The dot product z_1 and z_2 is defined by $z_1 o z_2 \neq z_1 \parallel z_2 \mid \cos \theta = \operatorname{Re}(\overline{z}_1 z_2) = a_1 a_2 + b_1 b_2$ (From(i)) Cross product of z_1 and z_2 is defined by $z_1 \times z_2 = |z_1| \mid z_2 \mid \sin \theta = \operatorname{Im}(\overline{z}_1 z_2) = a_1 b_2 - a_2 b_1$ (From(ii)) Hence, $z_1 o z_2 = a_1 a_2 + b_1 b_2 = \operatorname{Re}(\overline{z}_1 z_2)$ and $z_1 \times z_2 = a_1 b_2 - a_2 b_1 = \operatorname{Im}(\overline{z}_1 z_2)$

Important Tips

If z_1 and z_2 are perpendicular then $z_1 o z_2 = 0$ If z_1 and z_2 are parallel then $z_1 \times z_2 = 0$ Projection of z_1 on $z_2 = (z_1 o z_2)/|z_2|$ Projection of z_2 on $z_1 = (z_1 o z_2)/|z_1|$ Image: the state of triangle if two sides represented by z_1 and z_2 is $\frac{1}{2}|z_1 \times z_2|$ Image: Area of a parallelogram having sides z_1 and z_2 is $|z_1 \times z_2|$ Image: the state of parallelogram if diagonals represents by z_1 and z_2 is $\frac{1}{2}|z_1 \times z_2|$