Real and Imaginary Parts of a Complex Number.

If x and y are two real numbers, then a number of the form $z=x+i y$ is called a complex number. Here ' x ' is called the real part of z and ' y ' is known as the imaginary part of z. The real part of z is denoted by $\operatorname{Re}(z)$ and the imaginary part by $\operatorname{Im}(z)$.
If $z=3-4 i$, then $\operatorname{Re}(z)=3$ and $\operatorname{Im}(z)=-4$.

Note: A complex number z is purely real if its imaginary part is zero i.e., $\operatorname{Im}(z)=0$ and purely imaginary if its real part is zero i.e., $\operatorname{Re}(z)=0$.
i can be denoted by the ordered pair $(0,1)$.
The complex number (a, b) can also be split as $(a, 0)+(0,1)(b, 0)$.

Important Tips
-Acomplex number is an imaginary number if and only if its imaginary part is non-zero.
Here real part may or may not be zero.
-All purely imaginary numbers except zero are imaginary numbers but an imaginary number may or not be purely imaginary.
σ A real number can be written as a $+i .0$, therefore every real number can be considered as a complex number whose imaginary part is zero. Thus the set of real number (R) is a proper subset of the complex number (C) i.e., $R \subset C$.

- Complex number as an ordered pair : A complex number may also be defined as an ordered pair of real numbers and may be denoted by the symbol (a, b). For a complex number to be uniquely specified, we need two real numbers in particular order.

