## Algebraic Operations with Complex Numbers.

Let two complex numbers $z_{1}=a+i b$ and $z_{2}=c+i d$

| Addition | $:$ | $(a+i b)+(c+i d)=(a+c)+i(b+d)$ |
| :--- | :--- | :--- |
| Subtraction | $:$ | $(a+i b)-(c+i d)=(a-c)+i(b-d)$ |
| Multiplication | $:$ | $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$ |

Division $\quad \frac{a+i b}{c+i d} \quad$ (when at least one of $c$ and $d$ is nonzero)

$$
\begin{aligned}
& \frac{a+i b}{c+i d}=\frac{(a+i b)}{(c+i d)} \cdot \frac{(c-i d)}{(c-i d)} \quad \text { (Rationalization) } \\
& \frac{a+i b}{c+i d}=\frac{(a c+b d)}{c^{2}+d^{2}}+\frac{i(b c-a d)}{c^{2}+d^{2}}
\end{aligned}
$$

Properties of algebraic operations with complex numbers: Let $z_{1}, z_{2}$ and $z_{3}$ are any complex numbers then their algebraic operation satisfy following operations:
(i) Addition of complex numbers satisfies the commutative and associative properties
i.e., $z_{1}+z_{2}=z_{2}+z_{1}$ and $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$.
(ii) Multiplication of complex number satisfies the commutative and associative properties.
i.e., $z_{1} z_{2}=z_{2} z_{1}$ and $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$.
(iii) Multiplication of complex numbers is distributive over addition
i.e., $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$ and $\left(z_{2}+z_{3}\right) z_{1}=z_{2} z_{1}+z_{3} z_{1}$.

Note: $0=0+0 i$ is the identity element for addition.
$\square 1=1+0 i$ is the identity element for multiplication.
$\square$ The additive inverse of a complex number $z=a+i b$ is $-z$ (i.e. $-\mathrm{a}-\mathrm{ib}$ ).
For every non-zero complex number z , the multiplicative inverse of z is $\frac{1}{z}$.

