Conjugate of a Complex Number.

(1) **Conjugate complex number:** If there exists a complex number z = a + ib, $(a,b) \in R$, then its conjugate is defined as $\overline{z} = a - ib$.

Hence, we have $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z-\overline{z}}{2i}$. Geometrically, the conjugate of z is

the reflection or point image of z in the real axis.

(2) **Properties of conjugate:** If z, z_1 and z_2 are existing complex numbers, then we have the following results:

(i) $\overline{(\overline{z})} = z$

- (ii) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$
- (iii) $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$
- (iv) $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$, In general $\overline{z_1 . z_2 . z_3 z_n} = \overline{z}_1 . \overline{z}_2 . \overline{z}_3 \overline{z}_n$

(v)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \ z_2 \neq 0$$

$$(vi)(\overline{z})^n = (\overline{z^n})$$

- (vii) $z + \overline{z} = 2 \operatorname{Re}(z) = 2 \operatorname{Re}(\overline{z}) = \operatorname{purely real}$
- (viii) $z \overline{z} = 2i \operatorname{Im}(z) =$ purely imaginary
- (ix) $z \overline{z}$ = purely real
- (x) $z_1\overline{z}_2 + \overline{z}_1z_2 = 2\operatorname{Re}(z_1\overline{z}_2) = 2\operatorname{Re}(\overline{z}_1z_2)$
- (xi) $z \overline{z} = 0$ i.e., $z = \overline{z} \Leftrightarrow z$ is purely real i.e., Im(z) = 0

(xii) $z + \overline{z} = 0$ i.e., $z = -\overline{z} \Leftrightarrow$ either z = 0 or z is purely imaginary i.e., $\operatorname{Re}(z) = 0$

- (xiii) $z_1 = z_2 \Leftrightarrow \overline{z}_1 = \overline{z}_2$
- (xiv) $z = 0 \iff \overline{z} = 0$
- (xv) $z\overline{z} = 0 \Leftrightarrow z = 0$
- (xvi) If w = f(z) then $\overline{w} = f(\overline{z})$

(xvii) $\overline{re^{i\theta}} = re^{-i\theta}$

Important Tips

Grow Complex conjugate is obtained by just changing the sign of i. Gronjugate of *i* = −*i*

(3) **Reciprocal of a complex number :** For an existing non-zero complex number z = a + ib, the reciprocal is given by $z^{-1} = \frac{1}{z} = \frac{\overline{z}}{|z|^2}$ i.e., $z^{-1} = \frac{1}{a+ib} \Rightarrow \frac{a-ib}{a^2+b^2} = \frac{\operatorname{Re}(z)}{|z|^2} + \frac{i[-\operatorname{Im}(z)]}{|z|^2} = \frac{\overline{z}}{|z|^2}$.