Conjugate of a Complex Number.

(1) Conjugate complex number:If there exists a complex number $\mathrm{z}=a+i b,(a, b) \in \mathrm{R}$, then its conjugate is defined as $\bar{z}=a-i b$.
Hence, we have $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$. Geometrically, the conjugate of z is the reflection or point image of z in the real axis.
(2) Properties of conjugate: If z, z_{1} and z_{2} are existing complex numbers, then we
 have the following results:
(i) $\overline{\bar{z}}=z$
(ii) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
(iii) $\overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2}$
(iv) $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$, In general $\overline{z_{1} \cdot z_{2} \cdot z_{3} \ldots \ldots z_{n}}=\bar{z}_{1} \cdot \bar{z}_{2} \cdot \bar{z}_{3} \ldots . . \bar{z}_{n}$
(v) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\overline{\overline{z_{1}}}, z_{2} \neq 0$
$(\mathrm{vi})(\bar{z})^{n}=\left(\overline{z^{n}}\right)$
(vii) $z+\bar{z}=2 \operatorname{Re}(z)=2 \operatorname{Re}(\bar{z})=$ purely real
(viii) $z-\bar{z}=2 i \operatorname{Im}(z)=$ purely imaginary
(ix) $z \bar{z}=$ purely real
(x) $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}=2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=2 \operatorname{Re}\left(\overline{\overline{1}}_{1} z_{2}\right)$
(xi) $z-\bar{z}=0$ i.e., $z=\bar{z} \Leftrightarrow z$ is purely real i.e., $\operatorname{Im}(z)=0$
(xii) $z+\bar{z}=0$ i.e., $z=-\bar{z} \Leftrightarrow$ either $z=0$ or z is purely imaginary i.e., $\operatorname{Re}(z)=0$
(xiii) $z_{1}=z_{2} \Leftrightarrow \bar{z}_{1}=\bar{z}_{2}$
(xiv) $z=0 \Leftrightarrow \bar{z}=0$
(xv) $z \bar{z}=0 \Leftrightarrow z=0$
(xvi) If $w=f(z)$ then $\bar{w}=f(\bar{z})$
$(\mathrm{xvii}) \overline{r e^{i \theta}}=r e^{-i \theta}$

Important Tips

- Complex conjugate is obtained by just changing the sign of i .
- Conjugate of $i=-i$
-Conjugate of $i z=-\bar{z}$
$\sigma\left(z_{1}+z_{2}\right)$ and $\left(z_{1} . z_{2}\right)$ real $\Leftrightarrow z_{1}=\bar{z}_{2}$ or $z_{2}=\bar{z}_{1}$
- $\overline{z_{1} \bar{z}_{2}}=\bar{z}_{1} z_{2}$
(3) Reciprocal of a complex number : For an existing non-zero complex number $z=a+i b$, the reciprocal is given by $z^{-1}=\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$ i.e., $z^{-1}=\frac{1}{a+i b} \Rightarrow \frac{a-i b}{a^{2}+b^{2}}=\frac{\operatorname{Re}(z)}{|z|^{2}}+\frac{i[-\operatorname{Im}(z)]}{|z|^{2}}=\frac{\bar{z}}{|z|^{2}}$.

