Modulus of a Complex Number

Modulus of a complex number z = a +ib is defined by a positive real number given by

| z|=va® +b*, where a, b real numbers. Geometrically |z| represents the distance of point P
(represented by z) from the origin,

i.e. |z| = OP.

If |z| = 0, then z is known as zero modular complex number and is used to
represent the origin of reference plane.

If |z| = 1 the corresponding complex number is known as unimodular

complex number. Clearly z lies on a circle of unit radius having centre (0,

0).

Note: In the set C of all complex numbers, the order relation is not defined. As such z, >z, > or
z, <z, hasnomeaning.But| z, | >| z, | or| z,| < z,| has gotits meaning since| z,| and | z,| are real

numbers.
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Important Tips

=Modulus of every complex number is a non-negative real number. & z|=0iffz=0
i.e., Re(z)=1Im(z)=0
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Thus | z,| +| z,| is the greatest possible value of | z, +z,| and | z,| -| z,| is the least

possible value of | z, +z,|
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