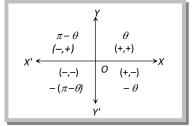
Argument of a Complex Number.

Let z = a + ib be any complex number. If this complex number is represented geometrically by a point P, then the angle made by the line OP with real axis is known as

argument or amplitude of z and is expressed as

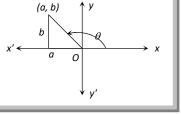
$$\arg(z) = \theta = \tan^{-1}\left(\frac{b}{a}\right), \ \theta = \angle POM$$
. Also, argument of a complex number is

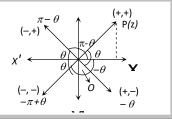

not unique, since if θ be a value of the argument, so also is $2n\pi + \theta$, where $n \in I$.

(1) Principal value of arg (z): The value θ of the argument, which satisfies the inequality $-\pi < \theta \le \pi$ is called the principal value of argument. Principal values of argument z will be $\theta, \pi - \theta, -\pi + \theta$ and $-\theta$ according as the point z lies in the 1st, 2nd, 3rd and 4th quadrants

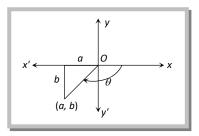
respectively, where $\theta = \tan^{-1} \left| \frac{b}{a} \right| = \alpha$ (acute angle). Principal value of

argument of any complex number lies between – $\pi < \theta \le \pi$.

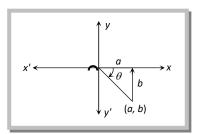

(i) $a, b \in \text{First quadrant } a > 0, b > 0$. $\arg(z) = \theta = \tan^{-1}\left(\frac{b}{a}\right)$. It is an



acute angle and positive.


VIZ	(a, b)
X' ←	0 a X
	↓ Y'

(ii) $(a,b) \in$ Second quadrant, a < 0, b > 0, $\arg(z) = \theta = \pi - \tan^{-1}\left(\frac{b}{|a|}\right)$. It is an obtuse angle and positive.



(iii) $(a,b) \in$ Third quadrant $a < 0, b < 0, \arg(z) = \theta = -\pi + \tan^{-1}\left(\frac{b}{a}\right)$. It is an obtuse angle and negative.

(iv) $(a,b) \in$ Fourth quadrant a > 0, b < 0, $\arg(z) = \theta = -\tan^{-1}\left(\frac{|b|}{a}\right)$. It is an acute angle and negative.

Quadrant	x	у	arg(z)	Interval of θ
I	+	+	θ	$0 < \theta < \pi / 2$
п	-	+	$\pi - heta$	$\pi / 2 < \theta < \pi$
ш	-	-	$-(\pi - \theta)$	$-\pi < \theta < -\pi / 2$
IV	+	-	$- \theta$	$-\pi/2 < \theta < 0$

Note: Argument of the complex number 0 is not defined.

Principal value of argument of a purely real number is 0 if the real number is positive and is π if the real number is negative.

Principal value of argument of a purely imaginary number is $\pi/2$ if the imaginary part is positive and is $-\pi/2$ if the imaginary part is negative.

(2) **Properties of arguments**

(i)
$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) + 2k\pi$$
, $(k = 0 \text{ or } 1 \text{ or } - 1)$
In general
 $\arg(z_1 z_2 z_3 \dots z_n) = \arg(z_1) + \arg(z_2) + \arg(z_3) + \dots + \arg(z_n) + 2k\pi$, $(k = 0 \text{ or } 1 \text{ or } -1)$

(ii)
$$arg(z_1\overline{z}_2) = arg(z_1) - arg(z_2)$$

(iii)
$$arg\left(\frac{z_1}{z_2}\right) = arg z_1 - arg z_2 + 2k\pi$$
, $(k = 0 \text{ or } 1 \text{ or } -1)$

(iv)
$$arg\left(\frac{z}{\overline{z}}\right) = 2arg z + 2k\pi$$
, $(k = 0 \text{ or } 1 \text{ or } -1)$

(v)
$$arg(z^{n}) = n arg z + 2k\pi$$
, $(k = 0 \text{ or } 1 \text{ or } -1)$

(vi) If
$$arg\left(\frac{z_2}{z_1}\right) = \theta$$
, then $arg\left(\frac{z_1}{z_2}\right) = 2k\pi - \theta$, where $k \in I$

(vii)
$$arg\bar{z} = -argz = arg\frac{1}{z}$$

(viii) $arg(z-\overline{z}) = \pm \pi / 2$

(ix)
$$arg(-z) = arg(z) \pm \pi$$

(x) $arg(z) + arg(\overline{z}) = 0$ or $arg(z) = -arg(\overline{z})$

(xi)
$$arg(z) - arg(\overline{z}) = \pm \pi$$

(xii) $z_1 \overline{z}_2 + \overline{z}_1 z_2 = 2|z_1| |z_2| \cos(\theta_1 - \theta_2)$, where $\theta_1 = arg(z_1)$ and $\theta_2 = arg(z_2)$

Note: Proper value of k must be chosen so that R.H.S. of (i), (ii), (iii) and (iv) lies in $(-\pi, \pi)$ The property of argument is same as the property of logarithm.

If arg (z) lies between $-\pi$ and $\pi(\pi)$ inclusive), then this value itself is the principal value of arg (z). If not, see whether arg (z) > π or $\leq -\pi$. If $\arg(z) > \pi$, go on subtracting 2π until it lies between $-\pi$ and $\pi(\pi)$ inclusive). The value thus obtained will be the principal value of arg (z).

The general value of $arg(\overline{z})$ is $2n\pi - arg(z)$.

Important Tips

Ŧ	If $z_1 = z_2 \iff z_1 = z_2 $ and $\arg z_1 = \arg z_2$.
Ŧ	$ z_1+z_2 = z_1 + z_2 \Leftrightarrow \arg(z_1) = \arg(z_2)$ i.e., z_1 and z_2 are parallel.
Ŧ	$ z_1+z_2 = z_1 + z_2 \Leftrightarrow \arg(z_1) - \arg(z_2) = 2n\pi$, where n is some integer.
Ŧ	$ z_1-z_2 = z_1 - z_2 \iff arg(z_1)-arg(z_2) = 2n\pi$, where n is some integer.
Ŧ	$ z_1 + z_2 = z_1 - z_2 \Leftrightarrow \operatorname{arg}(z_1) - \operatorname{arg}(z_2) = \pi/2$.
Ŧ	$If z_1 \le 1, z_2 \le 1 then (i) z_1 + z_2 ^2 \le (z_1 - z_2)^2 + (arg(z_1) - arg(z_2))^2 (ii) z_1 + z_2 ^2 \ge (z_1 + z_2)^2 - (z_1 - z_2)^2 + ($
	$\left(\arg\left(z_{1}\right)-\arg\left(z_{2}\right)\right)^{2}$
Ŧ	$ z_1 + z_2 ^2 = z_1 ^2 + z_2 ^2 + 2 z_1 z_2 \cos(\theta_1 - \theta_2).$
Ŧ	$ z_1 - z_2 ^2 = z_1 ^2 + z_2 ^2 - 2 z_1 z_2 \cos(\theta_1 - \theta_2).$
Ŧ	If $ z_1 = z_2 $ and $amp(z_1) + amp(z_2) = 0$, then $z_1 + z_2$ are conjugate complex numbers of each
	other.
Ŧ	$z \neq 0$, $amp(z+\overline{z}) = 0$ or $\pi; amp(z\overline{z}) = 0; amp(z-\overline{z}) = \pm \pi/2.$
Ŧ	arg (1) = 0, arg (-1) = π ; arg (<i>i</i>) = $\pi/2$, arg (- <i>i</i>) = $-\pi/2$.
Ŧ	$\arg(z) = \frac{\pi}{4} \Rightarrow \operatorname{Re}(z) = \operatorname{Im}(z).$
Ŧ	Amplitude of complex number in I and II quadrant is always positive and in III^{rd} and IV^{th}
	quadrant is always negative.
Ŧ	If a complex number multiplied by i (Iota) its amplitude will be increased by $\pi/2$ and will
	be decreased by $\pi/2$, if multiplied by -i, i.e. $arg(iz) = \frac{\pi}{2} + arg(z)$ and $arg(-iz) = arg(z) - \frac{\pi}{2}$.

Complex number	Value of argument
+ve Re (z)	0
–ve Re (z)	π
+ve Im (z)	$\pi / 2$
–ve Im (z)	$3\pi/2 \ or - \pi/2$
- (z)	$ \theta \pm \pi $, if θ is -ve and +ve respectively
(iz)	$\left\{\frac{\pi}{2} + \arg(z)\right\}$
-(iz)	$\left\{ arg(z) - \frac{\pi}{2} \right\}$
(z^n)	n. arg (z)
(z ₁ .z ₂)	$arg(z_1) + arg(z_2)$
$\left(\frac{z_1}{z_2}\right)$	arg (z ₁) – arg (z ₂)