Square Root of a Complex Number.

Let $a+i b$ be a complex number such that $\sqrt{a+i b}=x+i y$, where x and y are real numbers. Then
$\sqrt{a+i b}=x+i y \Rightarrow a+i b=(x+i y)^{2} \Rightarrow a+i b=\left(x^{2}-y^{2}\right)+2 i x y$
$\Rightarrow x^{2}-y^{2}=a$
and $2 x y=b$
[On equating real and imaginary parts]
Solving, $x= \pm \sqrt{\left(\frac{\sqrt{a^{2}+b^{2}}+a}{2}\right)}$ and $y= \pm \sqrt{\left(\frac{\sqrt{a^{2}+b^{2}}-a}{2}\right)}$
$\therefore \sqrt{a+i b}= \pm\left[\sqrt{\left(\frac{\sqrt{a^{2}+b^{2}}+a}{2}\right)}-i \sqrt{\left(\frac{\sqrt{a^{2}+b^{2}}-a}{2}\right)}\right]$
Therefore $\sqrt{a+i b}= \pm\left[\sqrt{\frac{|z|+a}{2}}+i \sqrt{\frac{|z|-a}{2}}\right]$ for $\mathrm{b}>0= \pm\left[\sqrt{\frac{|z|+a}{2}}-i \sqrt{\frac{|z|-a}{2}}\right]$ for $\mathrm{b}<0$.

Note: To find the square root of $a-i b$, replace i by -i in the above results.
The square root of iis $\pm\left(\frac{1+i}{\sqrt{2}}\right)$, [Here $\left.\mathrm{b}=1\right]$
The square root of - iis $\pm\left(\frac{1-i}{\sqrt{2}}\right)$, [Here $\left.\mathrm{b}=-1\right]$

Alternative method for finding the square root

(i) If the imaginary part is not even then multiply and divide the given complex number by 2. e.g. $z=8-15 i$ here imaginary part is not even so write $z=\frac{1}{2}(16-30 i)$ and let $a+i b=16-30 i$.
(ii) Now divide the numerical value of imaginary part of $a+i b$ by 2 and let quotient be P and find all possible two factors of the number P thus obtained and take that pair in which difference of squares of the numbers is equal to the real part of $a+i b$ e.g., here numerical value of $\operatorname{Im}(16-$ $30 i)$ is 30 . Now $30=2 \times 15$. All possible way to express 15 as a product of two are $1 \times 15,3 \times 5$ etc. here $5^{2}-3^{2}=16=\operatorname{Re}(16-30 \mathrm{i})$ so we will take 5,3 .
(iii) Take i with the smaller or the greater factor according as the real part of $a+i b$ is positive or negative and if real part is zero then take equal factors of P and associate i with any one of them e.g., $\operatorname{Re}(16-30 i)>0$, we will take i with 3 . Now complete the square and write down the square root of z.
e.g., $z=\frac{1}{2}[16-30 i]=\frac{1}{2}\left[5^{2}+(3 i)^{2}-2 \times 5 \times 3 i\right]=\frac{1}{2}[5-3 i]^{2} \Rightarrow \sqrt{z}= \pm \frac{1}{\sqrt{2}}(5-3 i)$

