Representation of Complex Number.

A complex number can be represented in the following from:
(1) Geometrical representation (Cartesian representation): The complex number $z=a+i b=(a, b)$ is represented by a point P whose coordinates are referred to rectangular axes $X O X^{\prime}$ and $Y O Y^{\prime}$ which are called real and imaginary axis respectively. Thus a complex number z is represented by a point in a plane, and corresponding to every point in this plane there exists a complex number such a plane is called argand plane or argand diagram or
 complex plane or gaussian plane.

Note: Distance of any complex number from the origin is called the modules of complex number and is denoted by $|z|$, i.e., $|z|=\sqrt{a^{2}+b^{2}}$
Angle of any complex number with positive direction of x - axis is called amplitude or argument of z. i.e., $\operatorname{amp}(z)=\arg (z)=\tan ^{-1}\left(\frac{b}{a}\right)$
(2) Trigonometrical (Polar) representation:In \triangle OPM, let $O P=r$, then $a=r \cos \theta$ and $b=r \sin \theta$. Hence z can be expressed as $z=r(\cos \theta+i \sin \theta)$

Where $r=|z|$ and $\theta=$ principal value of argument of z.
For general values of the argument $z=r[\cos (2 n \pi+\theta)+i \sin (2 n \pi+\theta)]$

Note: Sometimes $(\cos \theta+i \sin \theta)$ is written in short as cis θ.
(3) Vector representation: If P is the point (a, b) on the argand plane corresponding to the complex number $z=a+i b$.
Then $\overrightarrow{O P}=a \hat{i}+b \hat{j}, \quad \therefore|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}} \neq z \mid$ and $\arg \mathrm{z}=$ direction of the vector $\overrightarrow{O P}=\tan ^{-1}\left(\frac{b}{a}\right)$
Therefore, complex number z can also be represented by $\overrightarrow{O P}$.
(4) Eulerian representation (Exponential form):Since we have $e^{i \theta}=\cos \theta+i \sin \theta$ and thus z can be expressed as $z=r e^{i \theta}$, where $|z|=r$ and $\theta=\arg (\mathrm{z})$

Note: $e^{-i \theta}=(\cos \theta-i \sin \theta)$
$e^{i \theta}+e^{-i \theta}=2 \cos \theta, e^{i \theta}-e^{-i \theta}=2 i \sin \theta$

