Representation of Complex Number.

A complex number can be represented in the following from:

(1) **Geometrical representation (Cartesian representation):** The complex number z = a + ib = (a, b) is represented by a point P whose coordinates are referred to rectangular axes *XOX'* and *YOY'* which are called real and imaginary axis respectively. Thus a complex number z is represented by a point in a plane, and corresponding to every point in this plane there exists a complex number such a plane is called argand plane or argand diagram or complex plane or gaussian plane.

Note: Distance of any complex number from the origin is called the modules of complex number and is denoted by |z|, i.e., $|z| = \sqrt{a^2 + b^2}$ Angle of any complex number with positive direction of x- axis is called amplitude or argument of z. i.e., $amp(z) = arg(z) = \tan^{-1}\left(\frac{b}{a}\right)$

(2) **Trigonometrical (Polar) representation:**In \triangle OPM, let OP = r, then $a = r \cos \theta$ and $b = r \sin \theta$. Hence z can be expressed as $z = r(\cos \theta + i \sin \theta)$ Where r = |z| and $\theta =$ principal value of argument of z. For general values of the argument $z = r[\cos(2n\pi + \theta) + i\sin(2n\pi + \theta)]$

Note: Sometimes $(\cos \theta + i \sin \theta)$ is written in short as $cis\theta$.

(3) **Vector representation**: If P is the point (a, b) on the argand plane corresponding to the complex number z = a + ib.

Then $\overrightarrow{OP} = a\hat{i} + b\hat{j}$, $\therefore |\overrightarrow{OP}| = \sqrt{a^2 + b^2} \neq z|$ and arg $z = direction of the vector <math>\overrightarrow{OP} = \tan^{-1}\left(\frac{b}{a}\right)$ Therefore, complex number z can also be represented by \overrightarrow{OP} . (4) **Eulerian representation (Exponential form):**Since we have $e^{i\theta} = \cos \theta + i \sin \theta$ and thus z can be expressed as $z = re^{i\theta}$, where |z| = r and $\theta = \arg(z)$

Note: $e^{-i\theta} = (\cos \theta - i \sin \theta)$ $e^{i\theta} + e^{-i\theta} = 2\cos \theta, e^{i\theta} - e^{-i\theta} = 2i\sin \theta$