Quadratic Expression.

An expression of the form $a x^{2}+b x+c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\mathrm{a} \neq 0$ is called a quadratic expression in x . So in general, quadratic expression is represented by $f(x)=a x^{2}+b x+c$ or $y=a x^{2}+b x+c$.
(1) Graph of a quadratic expression:We have $y=a x^{2}+b x+c=f(x)$
$y=a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a^{2}}\right] \Rightarrow y+\frac{D}{4 a}=a\left(x+\frac{b}{2 a}\right)^{2}$
Now, let $y+\frac{D}{4 a}=Y$ and $X=x+\frac{b}{2 a}$
$Y=a \cdot X^{2} \Rightarrow X^{2}=\frac{1}{a} Y$
(i) The graph of the curve $y=f(x)$ is parabolic.
(ii) The axis of parabola is $X=0$ or $x+\frac{b}{2 a}=0$ i.e. (parallel to y-axis).
(iii) (a) If a >0, then the parabola opens upward.
(b) If $a<0$, then the parabola opens downward.

(iv) Intersection with axis
(a) X-axis: For x axis, $y=0 \Rightarrow a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{D}}{2 a}$

For $\mathrm{D}>0$, parabola cuts x -axis in two real and distinct point's i.e. $x=\frac{-b \pm \sqrt{D}}{2 a}$.
For $\mathrm{D}=0$, parabola touches x -axis in one point, $x=-b / 2 a$.

For $D<0$, parabola does not cut x-axis(i.e. imaginary value of x).

(b) \mathbf{y}-axis:For y axis $x=0, y=c$
(2) Maximum and minimum values of quadratic expression:Maximum and minimum value of quadratic expression can be found out by two methods:
(i) Discriminant method:In a quadratic expression $a x^{2}+b x+c$.
(a) If a >0, quadratic expression has least value at $x=-b / 2 a$. This least value is given by $\frac{4 a c-b^{2}}{4 a}=-\frac{D}{4 a}$.
(b) If a <0, quadratic expression has greatest value at $x=-b / 2 a$. This greatest value is given by $\frac{4 a c-b^{2}}{4 a}=-\frac{D}{4 a}$.
(ii) Graphical method:Vertex of the parabola $Y=a X^{2}$ is $X=0, Y=0$
i.e., $x+\frac{b}{2 a}=0, y+\frac{D}{4 a}=0 \Rightarrow x=-b / 2 a, y=-D / 4 a$

Hence, vertex of $y=a x^{2}+b x+c$ is $(-b / 2 a,-D / 4 a)$
(a) For a $>0, \mathrm{f}(\mathrm{x})$ has least value at $x=-\frac{b}{2 a}$. This least value is given by $f\left(-\frac{b}{2 a}\right)=-\frac{D}{4 a}$.
(b) For $\mathrm{a}<0, \mathrm{f}(\mathrm{x})$ has greatest value at $x=-b / 2 a$. This greatest value is given by $f\left(-\frac{b}{2 a}\right)=-\frac{D}{4 a}$.
(3) Sign of quadratic expression:Let $f(x)=a x^{2}+b x+c$ or $y=a x^{2}+b x+c$

Where $a, b, c \in R$ and $a \neq 0$, for some values of $x, f(x)$ may be positive, negative or zero.

This gives the following cases:
(i) a> 0 and $\mathrm{D}<0$, so $f(x)>0$ for all $x \in R$ i.e., $f(x)$ is positive for all real values of x .
(ii) $\mathrm{a}<0$ and $\mathrm{D}<0$, so $f(x)<0$ for all $\mathrm{x} \in \mathrm{R}$ i.e., $\mathrm{f}(\mathrm{x})$ is negative for all real values of x .
(iii) $\mathrm{a}>0$ and $\mathrm{D}=0$ so, $f(x) \geq 0$ for all $\mathrm{x} \in \mathrm{R}$ i.e., $\mathrm{f}(\mathrm{x})$ is positive for all real values of x except at vertex, where $f(x)=0$.
(iv) $\mathrm{a}<0$ and $\mathrm{D}=0$ so, $f(x) \leq 0$ for all $\mathrm{x} \in \mathrm{R}$ i.e. $\mathrm{f}(\mathrm{x})$ is negative for all real values of x except at vertex, where $f(x)=0$.
(v) $\mathrm{a}>0$ and $\mathrm{D}>0$

Let $f(x)=0$ have two real roots α and $\beta(\alpha<\beta)$, then $f(x)>0$ for all $x \in(-\infty, \alpha) \cup(\beta, \infty)$ and $f(x)<0$ for all $x \in(\alpha, \beta)$.
(vi) $a<0$ and $D>0$

Let $f(x)=0$ have two real roots α and $\beta(\alpha<\beta)$,
Then $f(x)<0$ for all $x \in(-\infty, \alpha) \cup(\beta, \infty)$ and $f(x)>0$ for all $x \in(\alpha, \beta)$

