Wavy Curve Method.

Let $f(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}}\left(x-a_{3}\right)^{k_{3}} \ldots \ldots . .\left(x-a_{n-1}\right)^{k_{n-1}}\left(x-a_{n}\right)^{k_{n}}$
Where $k_{1}, k_{2}, k_{3} \ldots, k_{n} \in N$ and $\quad a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}$ are fixed natural numbers satisfying the condition

$$
a_{1}<a_{2}<a_{3} \ldots . .<a_{n-1}<a_{n}
$$

First we mark the numbers $a_{1}, a_{2}, a_{3}, \ldots . . ., a_{n}$ on the real axis and the plus sign in the interval of the right of the largest of these numbers, i.e. on the right of a_{n}. If k_{n} is even then we put plus sign on the left of a_{n} and if k_{n} is odd then we put minus sign on the left of a_{n}. In the next interval we put a sign according to the following rule :
When passing through the point a_{n-1} the polynomial $\mathrm{f}(\mathrm{x})$ changes sign if k_{n-1} is an odd number and the polynomial $\mathrm{f}(\mathrm{x})$ has same sign if k_{n-1} is an even number. Then, we consider the next interval and put a sign in it using the same rule. Thus, we consider all the intervals. The solution of $f(x)>0$ is the union of all intervals in which we have put the plus sign and the solution of $f(x)<0$ is the union of all intervals in which we have put the minus sign.

