Position of Roots of a Quadratic Equation.

Let $f(x) = ax^2 + bx + c$, where a, b, $c \in R$ be a quadratic expression and k, k_1, k_2 be real numbers such that $k_1 < k_2$. Let α , β be the roots of the equation f(x) = 0 i.e. $ax^2 + bx + c = 0$. Then

 $\alpha = \frac{-b + \sqrt{D}}{2a}$, $\beta = \frac{-b - \sqrt{D}}{2a}$ where D is the discriminant of the equation.

(1) Condition for a number k (If both the roots of f(x) = 0 are less than k)

(2) Condition for a number k (If both the roots of f(x) = 0 are greater than k)

, where $\alpha \leq \beta$

(3) Condition for a number k (If k lies between the roots of f(x) = 0)

(i)
$$D > 0$$
 (ii) $a f(k) < 0$, where $\alpha < \beta$

(4) Condition for numbers k_1 and k_2 (If exactly one root of f(x) = 0 lies in the interval (k_1 , k_2))

(5) Condition for numbers k_1 and k_2 (If both roots of f(x) = 0 are confined between k_1 and k_2)

(i) $D \ge 0$ (roots may be equal)

(i) D > 0

(ii) $a f(k_1) > 0$ (iii) $a f(k_2) > 0$

- (iv) $k_1 < -b/2a < k_2$, where $\alpha \le \beta$ and $k_1 < k_2$
- (6) Condition for numbers k_1 and k_2 (If k_1 and k_2 lie between the roots of f(x) = 0)

(i) D > 0where $\alpha < \beta$ (ii) $a f(k_1) < 0$

(iii) $a f(k_2) < 0$,