Position of Roots of a Quadratic Equation.

Let $f(x)=a x^{2}+b x+c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ be a quadratic expression and k, k_{1}, k_{2} be real numbers such that $k_{1}<k_{2}$. Let α, β be the roots of the equation $f(x)=0$ i.e. $a x^{2}+b x+c=0$. Then $\alpha=\frac{-b+\sqrt{D}}{2 a}, \beta=\frac{-b-\sqrt{D}}{2 a}$ where D is the discriminant of the equation.
(1) Condition for a number \mathbf{k} (If both the roots of $\mathbf{f}(\mathbf{x})=\mathbf{0}$ are less than \mathbf{k})

(i) $D \geq 0$ (roots may be equal)
(ii) $a f(k)>0$
(iii) $k>-b / 2 a$, where $\alpha \leq \beta$
(2) Condition for a number \mathbf{k} (If both the roots of $f(\mathbf{x})=\mathbf{0}$ are greater than \mathbf{k})

(i) $D \geq 0$ (roots may be equal)
(ii) $a f(k)>0$
(iii) $k<-b / 2 a$, where $\alpha \leq \beta$
(3) Condition for a number \mathbf{k} (If \mathbf{k} lies between the roots of $\mathbf{f}(\mathbf{x})=\mathbf{0}$)
(i) $D>0$
(ii) $a f(k)<0$, where $\alpha<\beta$
(4) Condition for numbers $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ (If exactly one root of $\mathbf{f}(\mathbf{x})=\mathbf{0}$ lies in the interval ($\mathbf{k}_{\mathbf{1}}$, k_{2})

(i) $D>0$
(ii) $f\left(k_{1}\right) f\left(k_{2}\right)<0$, where $\alpha<\beta$.
(5) Condition for numbers \mathbf{k}_{1} and $\mathbf{k}_{\mathbf{2}}$ (If both roots of $\mathbf{f}(\mathbf{x})=\mathbf{0}$ are confined between \mathbf{k}_{1} and k_{2})

(i) $D \geq 0$ (roots may be equal)
(ii) $a f\left(k_{1}\right)>0$
(iii) $a f\left(k_{2}\right)>0$
(iv) $k_{1}<-b / 2 a<k_{2}$, where $\alpha \leq \beta$ and $k_{1}<k_{2}$
(6) Condition for numbers $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ (If $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ lie between the roots of $\mathbf{f}(\mathbf{x})=\mathbf{0}$)

$\begin{array}{lll}\text { (i) } D>0 & \text { (ii) } a f\left(k_{1}\right)<0 & \text { (iii) } a f\left(k_{2}\right)<0 \text {, }\end{array}$ where $\alpha<\beta$

