Rational Algebraic Inequations.

(1) Values of rational expression $P(x) / Q(x)$ for real values of x, where $P(x)$ and $Q(x)$ are quadratic expressions:To find the values attained by rational expression of the form $\frac{a_{1} x^{2}+b_{1} x+c_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}$ for real values of x , the following algorithm will explain the procedure :

Algorithm

Step I: Equate the given rational expression to y.
Step II: Obtain a quadratic equation in x by simplifying the expression in step I.
Step III: Obtain the discriminant of the quadratic equation in Step II.
Step IV: Put Discriminant ≥ 0 and solve the inequations for y. The values of y so obtained determines the set of values attained by the given rational expression.
(2) Solution of rational algebraic inequations: If $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are polynomial in x , then the inequations $\frac{P(x)}{Q(x)}>0, \frac{P(x)}{Q(x)}<0, \frac{P(x)}{Q(x)} \geq 0$ and $\frac{P(x)}{Q(x)} \leq 0$ are known as rational algebraic inequations.
To solve these inequations we use the sign method as explained in the following algorithm.

Algorithm

Step I: Obtain $P(x)$ and $Q(x)$.
Step II: Factorize $P(x)$ and $Q(x)$ into linear factors.
Step III: Make the coefficient of x positive in all factors.
Step IV: Obtain critical points by equating all factors to zero.

Step V: Plot the critical points on the number line. If there are n critical points, they divide the number line into ($n+1$) regions.
Step VI: In the right most region the expression $\frac{P(x)}{Q(x)}$ bears positive sign and in other regions the expression bears positive and negative signs depending on the exponents of the factors.

