(1) Equations containing absolute values

By definition, $|x|=\left\{\begin{array}{l}x, \text { if } x \geq 0 \\ -x, \text { if } x<0\end{array}\right.$
Important forms containing absolute value:
Form I: The equation of the form $|f(x)+g(x)|=|f(x)|+|g(x)|$ is equivalent of the system $f(x) . g(x) \geq 0$.
Form II: The equation of the form $\left|f_{1}(x)\right|+\left|f_{2}(x)\right|+\left|f_{3}(x)\right|+\ldots \ldots .\left|f_{n}(x)\right|=g(x)$
Where $f_{1}(x), f_{2}(x), f_{3}(x) \ldots \ldots f_{n}(x), g(x)$ are functions of x and $\mathrm{g}(\mathrm{x})$ may be a constant.
Equations of this form can be solved by the method of interval. We first find all critical points of $f_{1}(x), f_{2}(x) \ldots . . f_{n}(x)$. If coefficient of x is + ve, then graph starts with + ve sign and if it is negative, then graph starts with negative sign. Then using the definition of the absolute value, we pass form equation (i) to a collection of system which do not contain the absolute value symbols.

(2) Inequations containing absolute value

By definition, $|\mathrm{x}|<\mathrm{a} \Rightarrow-a<x<a(\mathrm{a}>0),|x| \leq a \Rightarrow-a \leq x \leq a$,
$|\mathrm{x}|>\mathrm{a} \Rightarrow x<-a$ or $x>a$ and $|x| \geq a \Rightarrow x \leq-a$ or $x \geq a$

