Equation and Inequation containing Absolute Value.

(1) Equations containing absolute values

By definition, $|x| = \begin{cases} x, \text{ if } x \ge 0 \\ -x, \text{ if } x < 0 \end{cases}$

Important forms containing absolute value:

Form I: The equation of the form |f(x) + g(x)| = |f(x)| + |g(x)| is equivalent of the system $f(x) \cdot g(x) \ge 0$.

Form II: The equation of the form $|f_1(x)| + |f_2(x)| + |f_3(x)| + \dots |f_n(x)| = g(x)$ (i)

Where $f_1(x), f_2(x), f_3(x), \dots, f_n(x), g(x)$ are functions of x and g(x) may be a constant.

Equations of this form can be solved by the method of interval. We first find all critical points of $f_1(x), f_2(x), \dots, f_n(x)$. If coefficient of x is +ve, then graph starts with +ve sign and if it is negative, then graph starts with negative sign. Then using the definition of the absolute value, we pass form equation (i) to a collection of system which do not contain the absolute value symbols.

(2) Inequations containing absolute value

By definition, $|\mathbf{x}| < a \Rightarrow -a < x < a$ (a > 0), $|x| \le a \Rightarrow -a \le x \le a$, $|\mathbf{x}| > a \Rightarrow x < -a$ or x > a and $|x| \ge a \Rightarrow x \le -a$ or $x \ge a$