## Nature of Roots.

In quadratic equation $a x^{2}+b x+c=0$, the term $b^{2}-4 a c$ is called discriminant of the equation, which plays an important role in finding the nature of the roots. It is denoted by $\Delta$ or D .
(1) If $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}$ and $\mathbf{a} \neq \mathbf{0}$, then:(i) If $\mathrm{D}<0$, then equation $a x^{2}+b x+c=0$ has non-real complex roots.
(ii) If $\mathrm{D}>0$, then equation $a x^{2}+b x+c=0$ has real and distinct roots, namely $\alpha=\frac{-b+\sqrt{D}}{2 a}$, $\beta=\frac{-b-\sqrt{D}}{2 a}$
and then $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$
(iii) If $\mathrm{D}=0$, then equation $a x^{2}+b x+c=0$ has real and equal roots $\alpha=\beta=\frac{-b}{2 a}$
and then $a x^{2}+b x+c=a(x-\alpha)^{2}$
To represent the quadratic expression $a x^{2}+b x+c$ in form (i) and (ii), transform it into linear factors.
(iv) If $\mathrm{D} \geq 0$, then equation $a x^{2}+b x+c=0$ has real roots.
(2) If $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{Q}, \mathbf{a} \neq \mathbf{0}$, then:(i) If $\mathrm{D}>0$ and D is a perfect square $\Rightarrow$ roots are unequal and rational.
(ii) If $D>0$ and $D$ is not a perfect square $\Rightarrow$ roots are irrational and unequal.
(3) Conjugate roots:The irrational and complex roots of a quadratic equation always occur in pairs. Therefore
(i) If one root be $\alpha+i \beta$ then other root will be $\alpha-i \beta$.
(ii) If one root be $\alpha+\sqrt{\beta}$ then other root will be $\alpha-\sqrt{\beta}$.
(4) If $D_{1}$ and $D_{\mathbf{2}}$ be the discriminants of two quadratic equations, then
(i) If $D_{1}+D_{2} \geq 0$, then
(a) At least one of $D_{1}$ and $D_{2} \geq 0$.
(b) If $D_{1}<0$ then $D_{2}>0$
(ii) If $D_{1}+D_{2}<0$, then
(a) At least one of $D_{1}$ and $D_{2}<0$.
(b) If $D_{1}>0$ then $D_{2}<0$.

