Roots under Particular Conditions.

For the quadratic equation $a x^{2}+b x+c=0$.
(1) If $b=0 \Rightarrow$ roots are of equal magnitude but of opposite sign.
(2) If $c=0 \Rightarrow$ one root is zero, other is $-b / a$.
(3) If $b=c=0 \Rightarrow$ both roots are zero.
(4) If $a=c \Rightarrow$ roots are reciprocal to each other.
(5) If $\left.\begin{array}{ll}a>0 & c<0 \\ a<0 & c>0\end{array}\right\} \Rightarrow$ roots are of opposite signs.
(6) If $\left.\begin{array}{rrr}a>0 & b>0 & c>0 \\ a<0 & b<0 & c<0\end{array}\right\} \Rightarrow$ both roots are negative, provided $D \geq 0$.
(7) If $\left.\begin{array}{rrr}a>0 & b<0 & c>0 \\ a<0 & b>0 & c<0\end{array}\right\} \Rightarrow$ both roots are positive, provided $D \geq 0$.
(8) If sign of $a=$ sign of $b \neq$ sign of $c \Rightarrow$ greater root in magnitude, is negative.
(9) If sign of $b=\operatorname{sign}$ of $c \neq \operatorname{sign}$ of $a \Rightarrow$ greater root in magnitude, is positive.
(10) If $a+b+c=0 \Rightarrow$ one root is 1 and second root is c/a.
(11) If $a=b=c=0$, then equation will become an identity and will be satisfied by every value of x.
(12) If $a=1$ and $\mathrm{b}, \mathrm{c} \in \mathrm{I}$ and the root of equation $a x^{2}+b x+c=0$ are rational numbers, then these roots must be integers.

- If an equation has only one change of sign, it has one +ve root and no more.
- If all the terms of an equation are + ve and the equation involves no odd power of x, then all its roots are complex.

