Relations between Roots and Coefficients.

(1) Relation between roots and coefficients of quadratic equation:If α and β are the roots of quadratic equation $a x^{2}+b x+c=0,(a \neq 0)$ then
Sum of roots $=S=\alpha+\beta=\frac{-b}{a}=-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}$

Product of roots $=P=\alpha \cdot \beta=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$

If roots of quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are α and β then
(i) $(\alpha-\beta)=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}= \pm \frac{\sqrt{b^{2}-4 a c}}{a}=\frac{ \pm \sqrt{D}}{a}$
(ii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\frac{b^{2}-2 a c}{a^{2}}$
(iii) $\alpha^{2}-\beta^{2}=(\alpha+\beta) \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}=-\frac{b \sqrt{b^{2}-4 a c}}{a^{2}}=\frac{ \pm b \sqrt{D}}{a^{2}}$
(iv) $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=-\frac{b\left(b^{2}-3 a c\right)}{a^{3}}$
(v) $\alpha^{3}-\beta^{3}=(\alpha-\beta)^{3}+3 \alpha \beta(\alpha-\beta)=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}\left\{(\alpha+\beta)^{2}-\alpha \beta\right\}=\frac{ \pm\left(b^{2}-a c\right) \sqrt{b^{2}-4 a c}}{a^{3}}$
(vi) $\alpha^{4}+\beta^{4}=\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}^{2}-2 \alpha^{2} \beta^{2}=\left(\frac{b^{2}-2 a c}{a^{2}}\right)^{2}-2 \frac{c^{2}}{a^{2}}$
(vii) $\alpha^{4}-\beta^{4}=\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{2}+\beta^{2}\right)=\frac{ \pm b\left(b^{2}-2 a c\right) \sqrt{b^{2}-4 a c}}{a^{4}}$
(viii) $\alpha^{2}+\alpha \beta+\beta^{2}=(\alpha+\beta)^{2}-\alpha \beta=\frac{b^{2}-a c}{a^{2}}$
(ix) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{b^{2}-2 a c}{a c}$
(x) $\alpha^{2} \beta+\beta^{2} \alpha=\alpha \beta(\alpha+\beta)=-\frac{b c}{a^{2}}$
(xi) $\left(\frac{\alpha}{\beta}\right)^{2}+\left(\frac{\beta}{\alpha}\right)^{2}=\frac{a^{4}+\beta^{4}}{\alpha^{2} \beta^{2}}=\frac{\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2}}=\frac{b^{2} D+2 a^{2} c^{2}}{a^{2} c^{2}}$
(2) Formation of an equation with given roots: A quadratic equation whose roots are α and β is given by $(x-\alpha)(x-\beta)=0$
$\therefore x^{2}-(\alpha+\beta) x+\alpha \beta=0$ i.e. $x^{2}-($ sum of roots $) x+($ product of roots $)=0$
$\therefore x^{2}-S x+P=0$
(3) Equation in terms of the roots of another equation:If α, β are roots of the equation $a x^{2}+b x+c=0$, then the equation whose roots are
(i) $-\alpha,-\beta \Rightarrow a x^{2}-b x+c=0$
(ii) $1 / \alpha, 1 / \beta \Rightarrow c x^{2}+b x+a=0$
(iii) $\alpha^{n}, \beta^{n} ; \mathrm{n} \in \mathrm{N} \Rightarrow a\left(x^{1 / n}\right)^{2}+b\left(x^{1 / n}\right)+c=0$
(iv) $\mathrm{k} \alpha, \mathrm{k} \beta \Rightarrow a x^{2}+k b x+k^{2} c=0$
(v) $k+\alpha, k+\beta \Rightarrow a(x-k)^{2}+b(x-k)+c=0$
(vi) $\frac{\alpha}{k}, \frac{\beta}{k} \Rightarrow k^{2} a x^{2}+k b x+c=0$
(vii) $\alpha^{1 / n}, \beta^{1 / n} ; \mathrm{n} \in \mathrm{N} \Rightarrow a\left(x^{n}\right)^{2}+b\left(x^{n}\right)+c=0$ (Replace x by x^{n})
(4) Symmetric expressions:The symmetric expressions of the roots α, β of an equation are those expressions in α and β, which do not change by interchanging α and β. To find the value of such an expression, we generally express that in terms of $\alpha+\beta$ and $\alpha \beta$.
Some examples of symmetric expressions are:
(i) $\alpha^{2}+\beta^{2}$
(ii) $\alpha^{2}+\alpha \beta+\beta^{2}$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
(v) $\alpha^{2} \beta+\beta^{2} \alpha$
(vi) $\left(\frac{\alpha}{\beta}\right)^{2}+\left(\frac{\beta}{\alpha}\right)^{2}$
(vii) $\alpha^{3}+\beta^{3}$
(viii) $\alpha^{4}+\beta^{4}$

