Condition for Common Roots.

(1) Only one root is common:Let α be the common root of quadratic equations
$a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x+c_{2}=0$.
$\therefore a_{1} \alpha^{2}+b_{1} \alpha+c_{1}=0, a_{2} \alpha^{2}+b_{2} \alpha+c_{2}=0$
By Crammer's rule : $\frac{\alpha^{2}}{\left|\begin{array}{ll}-c_{1} & b_{1} \\ -c_{2} & b_{2}\end{array}\right|}=\frac{\alpha}{\left|\begin{array}{cc}a_{1} & -c_{1} \\ a_{2} & -c_{2}\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$ or $\frac{\alpha^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{\alpha}{a_{2} c_{1}-a_{1} c_{2}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$
$\therefore \alpha=\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{2} c_{1}-a_{1} c_{2}}, \alpha \neq 0$
\therefore The condition for only one root common is $\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}=\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)$
(2) Both roots are common: Then required condition is $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$.

Important Tips

- To find the common root of two equations, make the coefficient of second degree term in the two equations equal and subtract. The value of x obtained is the required common root.
- Two different quadratic equations with rational coefficient can not have single common root which is complex or irrational as imaginary and surd roots always occur in pair.

