Properties of Quadratic Equation.

(1) If $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$ are of opposite signs then at least one or in general odd number of roots of the equation $f(x)=0$ lie between a and b .

(2) If $f(a)=f(b)$ then there exists a point c between a and b such that $f^{\prime}(c)=0, a<c<b$.

As is clear from the figure, in either case there is a point P or Q at $x=c$ where tangent is parallel to x-axis
i.e. $f^{\prime \prime}(x)=0$ at $x=c$.
(3) If α is a root of the equation $f(x)=0$ then the polynomial $f(x)$ is exactly divisible by $(x-\alpha)$ or $(x-\alpha)$ is factor of $f(x)$.
(4) If the roots of the quadratic equations $a x^{2}+b x+c=0, a_{2} x^{2}+b_{2} x+c_{2}=0$ are in the same ratio $\left(\right.$ i.e. $\left.\frac{\alpha_{1}}{\beta_{1}}=\frac{\alpha_{2}}{\beta_{2}}\right)$ then $b_{1}^{2} / b_{2}^{2}=a_{1} c_{1} / a_{2} c_{2}$.
(5) If one root is k times the other root of the quadratic equation $a x^{2}+b x+c=0$ then $\frac{(k+1)^{2}}{k}=\frac{b^{2}}{a c}$.

