Properties of Binomial Coefficients.

In the binomial expansion of $(1+x)^n$, $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$. Where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,...., ${}^{n}C_{n}$ are the coefficients of various powers of x and called binomial coefficients, and they are written as $C_0, C_1, C_2, \dots, C_n$.

Hence,
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_r x^r + \dots + C_n x^n$$
(i)

(1) The sum of binomial coefficients in the expansion of $(1 + x)^n$ is 2^n . Putting x = 1 in (i), we get $2^n = C_0 + C_1 + C_2 + \dots + C_n$(ii) (2) Sum of binomial coefficients with alternate signs : Putting x = -1 in (i)

We get,
$$0 = C_0 - C_1 + C_2 - C_3 + \dots$$
(iii)

(3) Sum of the coefficients of the odd terms in the expansion of $(1 + x)^n$ is equal to sum of the coefficients of even terms and each is equal to 2^{n-1} .

From (iii), we have $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots$(iv) i.e., sum of coefficients of even and odd terms are equal.

From (ii) and (iv), $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$(v) (4) ${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} {}^{n-1} {}^{n-2}C_{r-2}$ and so on.

(5) Sum of product of coefficients: Replacing x by $\frac{1}{r}$ in (i) we get $1 \geq^n$

$$\left(1+\frac{1}{x}\right)^{n} = C_{0} + \frac{C_{1}}{x} + \frac{C_{2}}{x^{2}} + \dots \frac{C_{n}}{x^{n}} + \dots$$
 (vi)

Multiplying (i) by (vi), we get $\frac{(1+x)^{2n}}{r^n} = (C_0 + C_1 x + C_2 x^2 + \dots) \left(C_0 + \frac{C_1}{r} + \frac{C_2}{r^2} + \dots \right)$

Now comparing coefficient of x^r on both sides.

We get, ${}^{2n}C_{n+r} = C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n$ (vii)

(6) Sum of squares of coefficients: Putting r = 0 in (vii), we get ${}^{2n}C_n = C_0^2 + C_1^2 + \dots + C_n^2$

(7) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$