Properties of Binomial Coefficients.

In the binomial expansion of $(1+x)^{n},(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots . .+{ }^{n} C_{r} x^{r}+\ldots .+{ }^{n} C_{n} x^{n}$. Where ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots \ldots . .,{ }^{n} C_{n}$ are the coefficients of various powers of x and called binomial coefficients, and they are written as $C_{0}, C_{1}, C_{2}, \ldots . . C_{n}$.

Hence, $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{r} x^{r}+\ldots . .+C_{n} x^{n}$
(1) The sum of binomial coefficients in the expansion of $(1+x)^{n}$ is 2^{n}.

Putting $x=1$ in (i), we get $2^{n}=C_{0}+C_{1}+C_{2}+\ldots . .+C_{n}$
(2) Sum of binomial coefficients with alternate signs :Putting $x=-1$ in (i)

We get, $0=C_{0}-C_{1}+C_{2}-C_{3}+\ldots .$.
(3) Sum of the coefficients of the odd terms in the expansion of $(1+x)^{n}$ is equal to sum of the coefficients of even terms and each is equal to 2^{n-1}.

From (iii), we have $C_{0}+C_{2}+C_{4}+\ldots . .=C_{1}+C_{3}+C_{5}+$ \qquad
i.e., sum of coefficients of even and odd terms are equal.

From (ii) and (iv), $C_{0}+C_{2}+C_{4}+\ldots . .=C_{1}+C_{3}+C_{5}+\ldots . .=2^{n-1}$
(4) ${ }^{n} C_{r}=\frac{n}{r}^{n-1} C_{r-1}=\frac{n}{r} \cdot \frac{n-1}{r-1}{ }^{n-2} C_{r-2}$ and so on.
(5) Sum of product of coefficients: Replacing x by $\frac{1}{x}$ in (i) we get
$\left(1+\frac{1}{x}\right)^{n}=C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots \frac{C_{n}}{x^{n}}+\ldots$.

Multiplying (i) by (vi), we get $\frac{(1+x)^{2 n}}{x^{n}}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots\right)\left(C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots ..\right)$
Now comparing coefficient of x^{r} on both sides.

We get, ${ }^{2 n} C_{n+r}=C_{0} C_{r}+C_{1} C_{r+1}+\ldots \ldots . C_{n-r} \cdot C_{n}$
(6) Sum of squares of coefficients: Putting $r=0$ in (vii), we get ${ }^{2 n} C_{n}=C_{0}^{2}+C_{1}^{2}+\ldots . . . C_{n}^{2}$
(7) ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$

