
Properties of Binomial Coefficients. 
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(1) The sum of binomial coefficients in the expansion of nx)1(  is n2 . 

Putting 1x  in (i), we get n
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(2) Sum of binomial coefficients with alternate signs :Putting 1x  in (i) 
 
We get, ......0 3210  CCCC      …..(iii) 

 
 
 
(3) Sum of the coefficients of the odd terms in the expansion of nx)1(   is equal to sum of the 
coefficients of even terms and each is equal to 12 n . 
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i.e., sum of coefficients of even and odd terms are equal. 
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(5) Sum of product of coefficients: Replacing x by 
x
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Multiplying (i) by (vi), we get 





 


...........)(

)1(
2
21

0
2

210

2

x

C

x

C
CxCxCC

x

x
n

n

 

Now comparing coefficient of rx  on both sides.  
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(6) Sum of squares of coefficients: Putting 0r  in (vii), we get  22
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