An Important Theorem.

If $(\sqrt{A} + B)^n = I + f$ where I and n are positive integers, n being odd and $0 \le f < 1$ then $(I + f) \cdot f = K^n$ where $A - B^2 = K > 0$ and $\sqrt{A} - B < 1$.

Note: If n is even integer then $(\sqrt{A} + B)^n + (\sqrt{A} - B)^n = I + f + f'$

Hence L.H.S. and I are integers. $\therefore f + f' \text{ is also integer; } \Rightarrow f + f' = 1; \quad \therefore f' = (1 - f)$ Hence $(I + f)(1 - f) = (I + f)f' = (\sqrt{A} + B)^n(\sqrt{A} - B)^n = (A - B^2)^n = K^n$.