An Important Theorem.

If $(\sqrt{A}+B)^{n}=I+f$ where I and n are positive integers, n being odd and $0 \leq f<1$ then $(I+f) . f=K^{n}$ where $A-B^{2}=K>0$ and $\sqrt{A}-B<1$.

Note: If n is even integer then $(\sqrt{A}+B)^{n}+(\sqrt{A}-B)^{n}=I+f+f^{\prime}$

Hence L.H.S. and I are integers.
$\therefore f+f^{\prime}$ is also integer; $\Rightarrow f+f^{\prime}=1 ; \therefore f^{\prime}=(1-f)$
Hence $(I+f)(1-f)=(I+f) f^{\prime}=(\sqrt{A}+B)^{n}(\sqrt{A}-B)^{n}=\left(A-B^{2}\right)^{n}=K^{n}$.

