Some Important Points.

(1) **Pascal's Triangle:**

1	$(x+y)^0$					
1	1					$(x+y)^1$
1	2		-	1		$(x+y)^2$
1	3		3	1		$(x+y)^3$
1	4	6	2	1	1	$(x+y)^4$
1	5	10	10	5	1	$(x+y)^5$

Pascal's triangle gives the direct binomial coefficients. Example: $(x + y)^4 = 1x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$

(2) Method for finding terms free from radical or rational terms in the expansion of $(a^{1/p} + b^{1/q})^N \forall a, b \in \text{prime numbers:}$ Find the general term

$$T_{r+1} = {}^{N}C_{r}(a^{1/p})^{N-r}(b^{1/q})^{r} = {}^{N}C_{r}a^{\frac{N-r}{p}}.b^{\frac{r}{q}}$$

Putting the values of $0 \le r \le N$, when indices of a and b are integers.

Note: Number of irrational terms = Total terms – Number of rational terms.