Some Important Expansions.

(1) Replacing y by $-y$ in (i), we get,

$$
\begin{align*}
& \quad(x-y)^{n}={ }^{n} C_{0} x^{n-0} \cdot y^{0}-{ }^{n} C_{1} x^{n-1} \cdot y^{1}+{ }^{n} C_{2} x^{n-2} \cdot y^{2} \ldots+(-1)^{r}{ }^{n} C_{r} x^{n-r} \cdot y^{r}+\ldots .+(-1)^{n}{ }^{n} C_{n} x^{0} \cdot y^{n} \\
& \text { i.e., }(x-y)^{n}=\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r} x^{n-r} \cdot y^{r} \tag{ii}
\end{align*}
$$

The terms in the expansion of $(x-y)^{n}$ are alternatively positive and negative, the last term is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,

$$
(1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots .+{ }^{n} C_{r} x^{r}+\ldots \ldots .+{ }^{n} C_{n} x^{n} \text { i.e.. }(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}
$$

This is expansion of $(1+x)^{n}$ in ascending power of x.
(3) Replacing x by 1 and y by $-x$ in (i) we get,

$$
\begin{aligned}
& \quad(1-x)^{n}={ }^{n} C_{0} x^{0}-{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}-\ldots \ldots .+(-1)^{r}{ }^{n} C_{r} x^{r}+\ldots .+(-1)^{n}{ }^{n} C_{n} x^{n} \text { i.e., } \\
& (1-x)^{n}=\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r} x^{r}
\end{aligned}
$$

(4) $(x+y)^{n}+(x-y)^{n}=2\left[{ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{2} x^{n-2} y^{2}+{ }^{n} C_{4} x^{n-4} y^{4}+\ldots \ldots.\right]$ and $(x+y)^{n}-(x-y)^{n}=2\left[{ }^{n} C_{1} x^{n-1} y^{1}+{ }^{n} C_{3} x^{n-3} y^{3}+{ }^{n} C_{5} x^{n-5} y^{5}+\ldots \ldots ..\right]$
(5) The coefficient of $(r+1)^{t h}$ term in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r}$.
(6) The coefficient of x^{r} in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r}$.

Note: If n is odd, then $(x+y)^{n}+(x-y)^{n}$ and $(x+y)^{n}-(x-y)^{n}$, both have the same number of terms equal to $\left(\frac{n+1}{2}\right)$.

If n is even, then $(x+y)^{n}+(x-y)^{n}$ has $\left(\frac{n}{2}+1\right)$ terms and $(x+y)^{n}-(x-y)^{n}$ has $\frac{n}{2}$ terms.

