
Some Important Expansions. 
 

(1) Replacing y by – y in (i), we get, 
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The terms in the expansion of nyx )(   are alternatively positive and negative, the last term is 

positive or negative according as n is even or odd. 
 
 
(2) Replacing x by 1 and y by x in equation (i) we get, 
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This is expansion of nx)1(   in ascending power of x. 
 
 
(3) Replacing x by 1 and y by – x in (i) we get, 
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(5) The coefficient of thr )1(   term in the expansion of nx)1(  is r
nC . 

 

(6) The coefficient of rx  in the expansion of nx)1(  is r
nC . 

 

 

 

 



 

Note:  If n is odd, then nn yxyx )()(  and nn yxyx )()(  , both have the same number of terms 

equal to .
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