General Term.

$(x+y)^{n}={ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{1} x^{n-1} y^{1}+{ }^{n} C_{2} x^{n-2} y^{2}+\ldots . .+{ }^{n} C_{r} x^{n-r} y^{r}+\ldots .+{ }^{n} C_{n} x^{0} y^{n}$
The first term $={ }^{n} C_{0} x^{n} y^{0}$
The second term $={ }^{n} C_{1} x^{n-1} y^{1}$. The third term $={ }^{n} C_{2} x^{n-2} y^{2}$ and so on
The term ${ }^{n} C_{r} x^{n-r} y^{r}$ is the $(r+1)^{\text {th }}$ term from beginning in the expansion of $(x+y)^{n}$.
Let T_{r+1} denote the $(r+1)^{\text {th }}$ term $\therefore T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$
This is called general term, because by giving different values to r, we can determine all terms of the expansion.
In the binomial expansion of $(x-y)^{n}, T_{r+1}=(-1)^{r}{ }^{n} C_{r} x^{n-r} y^{r}$
In the binomial expansion of $(1+x)^{n}, T_{r+1}={ }^{n} C_{r} x^{r}$
In the binomial expansion of $(1-x)^{n}, T_{r+1}=(-1)^{r}{ }^{n} C_{r} x^{r}$

Note: In the binomial expansion of $(x+y)^{n}$, the $\mathrm{p}^{\text {th }}$ term from the end is $(n-p+2)^{\text {th }}$ term from beginning.

Important Tips

In the expansion of $(x+y)^{n}, n \in N$
$\frac{T_{r+1}}{T_{r}}=\left(\frac{n-r+1}{r}\right) \frac{y}{x}$
σ The coefficient of x^{n-1} in the expansion of $(x-1)(x-2) \ldots \ldots(x-n)=-\frac{n(n+1)}{2}$
The coefficient of x^{n-1} in the expansion of $(x+1)(x+2) \ldots . .(x+n)=\frac{n(n+1)}{2}$

