General Term.

 $(x + y)^{n} = {}^{n}C_{0}x^{n}y^{0} + {}^{n}C_{1}x^{n-1}y^{1} + {}^{n}C_{2}x^{n-2}y^{2} + \dots + {}^{n}C_{r}x^{n-r}y^{r} + \dots + {}^{n}C_{n}x^{0}y^{n}$ The first term = ${}^{n}C_{0}x^{n}y^{0}$ The second term = ${}^{n}C_{1}x^{n-1}y^{1}$. The third term = ${}^{n}C_{2}x^{n-2}y^{2}$ and so on The term ${}^{n}C_{r}x^{n-r}y^{r}$ is the $(r + 1)^{th}$ term from beginning in the expansion of $(x + y)^{n}$. Let T_{r+1} denote the $(r + 1)^{th}$ term $\therefore T_{r+1} = {}^{n}C_{r}x^{n-r}y^{r}$ This is called general term, because by giving different values to r, we can determine all terms of the expansion. In the binomial expansion of $(x - y)^{n}$, $T_{r+1} = (-1)^{r} {}^{n}C_{r}x^{n-r}y^{r}$ In the binomial expansion of $(1 + x)^{n}$, $T_{r+1} = {}^{n}C_{r}x^{r}$

Note: In the binomial expansion of $(x + y)^n$, the pthterm from the end is $(n - p + 2)^{th}$ term from beginning.

Important Tips

☞ In the expansion of $(x + y)^n, n \in N$

$$\frac{T_{r+1}}{T_r} = \left(\frac{n-r+1}{r}\right)\frac{y}{x}$$

- The coefficient of x^{n-1} in the expansion of $(x-1)(x-2)....(x-n) = -\frac{n(n+1)}{2}$
- The coefficient of x^{n-1} in the expansion of $(x+1)(x+2)....(x+n) = \frac{n(n+1)}{2}$