Middle Term.

The middle term depends upon the value of n.
(1) When \mathbf{n} is even, then total number of terms in the expansion of $(x+y)^{n}$ is $n+1$ (odd). So there is only one middle term i.e., $\left(\frac{n}{2}+1\right)^{\text {th }}$ term is the middle term. $T_{\left[\frac{n}{2}+1\right.}={ }^{n} C_{n / 2} x^{n / 2} y^{n / 2}$
(2) When \mathbf{n} is odd, then total number of terms in the expansion of $(x+y)^{n}$ is $n+1$ (even). So, there are two middle terms i.e., $\left(\frac{n+1}{2}\right)^{\text {th }}$ and $\left(\frac{n+3}{2}\right)^{\text {th }}$ are two middle terms.

$$
T_{\left(\frac{n+1}{2}\right)}={ }^{n} C_{\frac{n-1}{2}} x^{\frac{n+1}{2}} y^{\frac{n-1}{2}} \text { and } T_{\left(\frac{n+3}{2}\right)}={ }^{n} C_{\frac{n+1}{2}} x^{\frac{n-1}{2}} y^{\frac{n+1}{2}}
$$

Note: When there are two middle terms in the expansion then their binomial coefficients are equal.
Binomial coefficient of middle term is the greatest binomial coefficient.

