1. Definitions.

Let A and B be two non-empty sets, then every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.
Let $R \subseteq A \times B$ and $(a, b) \in R$. Then we say that a is related to b by the relation R and write it as $a R b$. If $(a, b) \in R$, we write it as $a R b$.
Example: Let $A=\{1,2,5,8,9\}, B=\{1,3\}$ we set a relation from A to B as: $a R$ iff $a \leq b$;
$a \in A, b \in B$. Then $R=\{(1,1)\},(1,3),(2,3)\} \subset A \times B$
(1) Total number of relations:Let A and B be two non-empty finite sets consisting of m and n elements respectively. Then $A \times B$ consists of $m n$ ordered pairs. So, total number of subset of A $\times B$ is $2^{m n}$. Since each subset of $A \times B$ defines relation from A to B, so total number of relations from A to B is $2^{m n}$. Among these $2^{m n}$ relations the void relation ϕ and the universal relation $A \times B$ are trivial relations from A to B.
(2) Domain and range of a relation:Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called the domain of R, while the set of all second components or coordinates of the ordered pairs in R is called the range of R.
Thus, $\operatorname{Dom}(R)=\{a:(a, b) \in R\}$ and Range $(R)=\{b:(a, b) \in R\}$.
It is evident from the definition that the domain of a relation from A to B is a subset of A and its range is a subset of B.
(3) Relation on a set:Let A be a non-void set. Then, a relation from A to itself $i . e$. a subset of $A \times$ A is called a relation on set A.

