1. Types of Relations.

(1) **Reflexive relation:** A relation R on a set A is said to be reflexive if every element of A is related to itself.

Thus, R is reflexive \Leftrightarrow (a, a) \in R for all $a \in A$. A relation R on a set A is not reflexive if there exists an element $a \in A$ such that (a, a) \notin R. Example: Let A = {1, 2, 3} and R = {(1, 1); (1, 3)} Then R is not reflexive since $3 \in A$ but (3, 3) \notin R

Note: The identity relation on a non-void set A is always reflexive relation on A. However, a reflexive relation on A is not necessarily the identity relation on A.

□ The universal relation on a non-void set A is reflexive.

(2) Symmetric relation: A relation R on a set A is said to be a symmetric relation iff

 $\begin{array}{ll} (a,\,b)\in R \Rightarrow (b,\,a)\in R \text{ for all } a,\,b\in A \\ \text{i.e.} & aRb \Rightarrow bRa \text{ for all } a,\,b\in A. \end{array}$

It should be noted that R is symmetric iff $R^{-1} = R$

Note: The identity and the universal relations on a non-void set are symmetric relations. A relation R on a set A is not a symmetric relation if there are at least two elements a, $b \in A$ such that (a, b) $\in R$ but (b, a) $\notin R$.

A reflexive relation on a set A is not necessarily symmetric.

(3) **Anti-symmetric relation:** Let A be any set. A relation R on set A is said to be an antisymmetric relation iff (a, b) \in R and (b, a) \in R \Rightarrow a = b for all a, b \in A.

Thus, if $a \neq b$ then a may be related to b or b may be related to a, but never both.

Example: Let N be the set of natural numbers. A relation $R \subseteq N \times N$ is defined by xRy iff x divides y(i.e., x/y).

Then x R y, $y R x \Rightarrow x$ divides y, y divides $x \Rightarrow x = y$

Note: The identity relation on a set A is an anti-symmetric relation.

The universal relation on a set A containing at least two elements is not anti-symmetric, because if $a \neq b$ are in A, then ais related to b and b is related to a under the universal relation will imply that a = b but a $\neq b$.

The set $\{(a, a): a \in A\} = D$ is called the diagonal line of $A \times A$. Then "the relation R in A is antisymmetric iff $R \cap R^{-1} \subseteq D$ ".

(4) **Transitive relation:**Let A be any set. A relation R on set A is said to be a transitive relation iff (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for all a, b, c \in A i.e., aRb and bRc \Rightarrow aRc for all a, b, c \in A. In other words, if a is related to b, b is related to c, then a is related to c. Transitivity fails only when there exists a, b, c such that a R b, b R c but a R \mathscr{E} . Example: Consider the set A = {1, 2, 3} and the relations $R_1 = \{(1, 2), (1, 3)\}; R_2 = \{(1, 2)\}; R_3 = \{(1, 1)\}; R_4 = \{(1, 2), (2, 1), (1, 1)\}$ Then R_1 , R_2 , R_3 are transitive while R_4 is not transitive since in R_4 , $(2, 1) \in R_4$; $(1, 2) \in R_4$ but $(2, 2) \notin R_4$.

Note: The identity and the universal relations on a non-void sets are transitive. The relation 'is congruent to' on the set T of all triangles in a plane is a transitive relation.

(5) **Identity relation:** Let A be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on A is called the identity relation on A.

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only. Every identity relation will be reflexive, symmetric and transitive.

Example: On the set = $\{1, 2, 3\}$, R = $\{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on A.

Note: It is interesting to note that every identity relation is reflexive but every reflexive relation need not be an identity relation.

Also, identity relation is reflexive, symmetric and transitive.

(6) Equivalence relation: A relation R on a set A is said to be an equivalence relation on A iff

- (i) It is reflexive i.e. (a, a) \in R for all a \in A
- (ii) It is symmetric i.e. (a, b) $\in R \Rightarrow$ (b, a) $\in R$, for all a, b $\in A$

(iii) It is transitive i.e. (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for all a, b, c \in A.

Note: **Congruence modulo (m):** Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m if a - b is divisible by m and we write $a \equiv b \pmod{m}$.

Thus $a \equiv b \pmod{m} \Leftrightarrow a - b$ is divisible by m. For example, $18 \equiv 3 \pmod{5}$ because 18 - 3 = 15 which is divisible by 5. Similarly, $3 \equiv 13 \pmod{2}$ because 3 - 13 = -10 which is divisible by 2. But $25 \neq 2 \pmod{4}$ because 4 is not a divisor of 25 - 3 = 22.

The relation "Congruence modulo m" is an equivalence relation.

Important Tips

- ${}_{\mathscr{T}}$ If R and S are two equivalence relations on a set A , then R \cap S is also an equivalence relation on A.
- The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- *The inverse of an equivalence relation is an equivalence relation.*