1. Types of Relations.

(1) Reflexive relation:A relation R on a set A is said to be reflexive if every element of A is related to itself.
Thus, R is reflexive $\Leftrightarrow(a, a) \in R$ for all $a \in A$.
A relation R on a set A is not reflexive if there exists an element $a \in A$ such that $(a, a) \notin R$.
Example: Let $A=\{1,2,3\}$ and $R=\{(1,1) ;(1,3)\}$
Then R is not reflexive since $3 \in A$ but $(3,3) \notin \mathrm{R}$

Note: The identity relation on a non-void set A is always reflexive relation on A. However, a reflexive relation on A is not necessarily the identity relation on A.
The universal relation on a non-void set A is reflexive.
(2) Symmetric relation:A relation R on a set A is said to be a symmetric relation iff $(a, b) \in R \Rightarrow(b, a) \in R$ for all $a, b \in A$
i.e. $\quad \mathrm{aRb} \Rightarrow \mathrm{bRa}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$.

It should be noted that R is symmetric iff $R^{-1}=R$

Note: The identity and the universal relations on a non-void set are symmetric relations.
A relation R on a set A is not a symmetric relation if there are at least two elements $a, b \in A$ such that (a,
b) $\in R$ but $(b, a) \notin R$.

A reflexive relation on a set A is not necessarily symmetric.
(3) Anti-symmetric relation: Let A be any set. A relation R on set A is said to be an antisymmetric relation iff $(a, b) \in R$ and $(b, a) \in R \Rightarrow a=b$ for $a l l a, b \in A$.
Thus, if $\mathrm{a} \neq \mathrm{b}$ then a may be related to b or b may be related to a , but never both.
Example: Let N be the set of natural numbers. A relation $R \subseteq N \times N$ is defined by $x R y$ iff x divides y (i.e., x / y).
Then $x R y, y R x \Rightarrow x$ divides y , y divides $x \Rightarrow x=y$

Note: The identity relation on a set A is an anti-symmetric relation.

The universal relation on a set A containing at least two elements is not anti-symmetric, because if $a \neq b$ are in A, then ais related to b and b is related to a under the universal relation will imply that $a=b$ but a $\neq \mathrm{b}$.

The set $\{(a, a): a \in A\}=D$ is called the diagonal line of $A \times A$. Then "the relation R in A is antisymmetric iff $R \cap R^{-1} \subseteq D^{\prime \prime}$.
(4) Transitive relation:Let A be any set. A relation R on set A is said to be a transitive relation iff $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$ for all $a, b, c \in A$ i.e., $a R b$ and $b R c \Rightarrow a R c$ for $a l l a, b, c \in A$. In other words, if a is related to b, b is related to c, then a is related to c.

Transitivity fails only when there exists a, b, c such that $a R b, b R c$ but $a R \ell$.
Example: Consider the set $A=\{1,2,3\}$ and the relations

$$
R_{1}=\{(1,2),(1,3)\} ; R_{2}=\{(1,2)\} ; R_{3}=\{(1,1)\} ; R_{4}=\{(1,2),(2,1),(1,1)\}
$$

Then R_{1}, R_{2}, R_{3} are transitive while R_{4} is not transitive since in $R_{4},(2,1) \in R_{4} ;(1,2) \in R_{4}$ but $(2,2) \notin R_{4}$.

Note: The identity and the universal relations on a non-void sets are transitive.
The relation 'is congruent to' on the set T of all triangles in a plane is a transitive relation.
(5) Identity relation: Let A be a set. Then the relation $I_{A}=\{(a, a): a \in A\}$ on A is called the identity relation on A.

In other words, a relation I_{A} on A is called the identity relation if every element of A is related to itself only. Every identity relation will be reflexive, symmetric and transitive.

Example: On the set $=\{1,2,3\}, R=\{(1,1),(2,2),(3,3)\}$ is the identity relation on A.

Note: It is interesting to note that every identity relation is reflexive but every reflexive relation need not be an identity relation.

Also, identity relation is reflexive, symmetric and transitive.
(6) Equivalence relation:A relation R on a set A is said to be an equivalence relation on A iff
(i) It is reflexive i.e. $(a, a) \in R$ for all $a \in A$
(ii) It is symmetric i.e. $(a, b) \in R \Rightarrow(b, a) \in R$, for all $a, b \in A$
(iii) It is transitive i.e. $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$ for all $a, b, c \in A$.

Note: Congruence modulo (\mathbf{m}): Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m if $a-b$ is divisible by m and we write $a \equiv b(\bmod \mathrm{~m})$.

Thus $a \equiv b(\bmod \mathrm{~m}) \Leftrightarrow a-b$ is divisible by m . For example, $18 \equiv 3(\bmod 5)$ because $18-3=15$ which is divisible by 5 . Similarly, $3 \equiv 13(\bmod 2)$ because $3-13=-10$ which is divisible by 2 . But $25 \neq 2(\bmod 4)$ because 4 is not a divisor of $25-3=22$.
The relation "Congruence modulo m " is an equivalence relation.

Important Tips

- If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A .

The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

- The inverse of an equivalence relation is an equivalence relation.

