Some Important Results from the Logarithmic Series.

(1) Replacing x by $-x$ in the logarithmic series, we get
$\log _{e}(1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots \ldots \ldots \infty$ or $-\log _{e}(1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+$ \qquad .∞
(2) (i) $\log _{e}(1+x)+\log _{e}(1-x)=\log _{e}\left(1-x^{2}\right)=-2\left\{\frac{x^{2}}{2}+\frac{x^{4}}{4}+\ldots \ldots \ldots\right\},(-1<x<1)$
(ii) $\log _{e}(1+x)-\log _{e}(1-x)=2\left[x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \ldots \ldots \infty\right]$ or $\log _{e}\left(\frac{1+x}{1-x}\right)=2\left[x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \ldots \ldots \infty\right]$
(3) The series expansion of $\log _{e}(1+x)$ may fail to be valid if $|\mathrm{x}|$ is not less than 1. It can be proved that the logarithmic series is valid for $x=1$. Putting $x=1$ in the logarithmic series.
We get, $\log _{e} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots \ldots . . \infty=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+$. \qquad
(4) When $x=-1$, the logarithmic series does not have a sum. This is in conformity with the fact that $\log (1-1)$ is not a finite quantity.

