Some Special Determinants.

(1) Symmetric determinant: A determinant is called symmetric determinant if for its every element $a_{i j}=a_{j i} \forall i, j$ e.g., $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$
(2) Skew-symmetric determinant:A determinant is called skew symmetric determinant if for its every element $a_{i j}=-a_{j i} \forall i, j$ e.g., $\left|\begin{array}{ccc}0 & 3 & -1 \\ -3 & 0 & 5 \\ 1 & -5 & 0\end{array}\right|$

Note: Every diagonal element of a skew symmetric determinant is always zero.
The value of a skew symmetric determinant of even order is always a perfect square and that of odd order is always zero.
(ii) $\left|\begin{array}{cc}0 & a \\ -a & 0\end{array}\right|=0+a^{2}=a^{2}$ (Perfect square)
(iii) $\left|\begin{array}{ccc}0 & a-b & e-f \\ b-a & 0 & l-m \\ f-e & m-l & 0\end{array}\right|=0$
(3) Cyclic order: If elements of the rows (or columns) are in cyclic order.
i.e.
(i) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a)$

Testprep Kart

Knowledge... Everywhere

(iii) $\left|\begin{array}{lll}a & b c & a b c \\ b & c a & a b c \\ c & a b & a b c\end{array}\right|=\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|=a b c(a-b)(b-c)(c-a)$
(iv) $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$
(v) $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$

Note: These results direct applicable in lengthy questions (As behavior of standard results)

9 www.testprepkart.com
2-2 info@testprepkart.com

