Definition

(1) Consider two equations, $a_{1} x+b_{1} y=0 \quad$.....(i) and $a_{2} x+b_{2} y=0 \quad$.....(ii)

Multiplying (i) by b_{2} and (ii) by b_{1} and subtracting, dividing by x, we get, $a_{1} b_{2}-a_{2} b_{1}=0$
The result $a_{1} b_{2}-a_{2} b_{1}$ is represented by $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
Which is known as determinant of order two and $a_{1} b_{2}-a_{2} b_{1}$ is the expansion of this determinant. The horizontal lines are called rows and vertical lines are called columns. Now let us consider three homogeneous linear equations
$a_{1} x+b_{1} y+c_{1} z=0, ~ a_{2} x+b_{2} y+c_{2} z=0$ and $a_{3} x+b_{3} y+c_{3} z=0$
Eliminated x, y, z from above three equations we obtain
$a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)=0$
The L.H.S. of (iii) is represented by $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
It contains three rows and three columns, it is called a determinant of third order.

Note: The number of elements in a second order is $2^{2}=4$ and the number of elements in a third order determinant is $3^{2}=9$.
(2) Rows and columns of a determinant:In a determinant horizontal lines counting from top $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, \qquad ..respectively known as rows and denoted by R_{1}, R_{2}, R_{3}, \qquad and vertical lines counting left to right, $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots .$. respectively known as columns and denoted by $C_{1}, C_{2}, C_{3}, \ldots .$.
(3) Shape and constituents of a determinant: Shape of every determinant is square. If a determinant of n order then it contains n rows and n columns. i.e., Number of constituents in determinants $=n^{2}$
(4) Sign system for expansion of determinant: Sign system for order 2, order 3, order 4, are given by $\left|\begin{array}{ll}+ & - \\ - & +\end{array}\right|,\left|\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right|,\left|\begin{array}{llll}+ & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & +\end{array}\right|, \ldots .$.

