Definition.

(1) Consider two equations, $a_1x + b_1y = 0$ (i) and $a_2x + b_2y = 0$ (ii) Multiplying (i) by b_2 and (ii) by b_1 and subtracting, dividing by *x*, we get, $a_1b_2 - a_2b_1 = 0$

The result $a_1b_2 - a_2b_1$ is represented by $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$

Which is known as determinant of order two and $a_1b_2 - a_2b_1$ is the expansion of this determinant. The horizontal lines are called rows and vertical lines are called columns. Now let us consider three homogeneous linear equations $a_1x + b_1y + c_1z = 0$, $a_2x + b_2y + c_2z = 0$ and $a_3x + b_3y + c_3z = 0$

Eliminated x, y, z from above three equations we obtain

 $a_{1}(b_{2}c_{3} - b_{3}c_{2}) - b_{1}(a_{2}c_{3} - a_{3}c_{2}) + c_{1}(a_{2}b_{3} - a_{3}b_{2}) = 0 \qquad \qquad \text{.....(iii)}$ The L.H.S. of (iii) is represented by $\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix}$

It contains three rows and three columns, it is called a determinant of third order.

Note: The number of elements in a second order is $2^2 = 4$ and the number of elements in a third order determinant is $3^2 = 9$.

(2) **Rows and columns of a determinant:** In a determinant horizontal lines counting from top 1^{st} , 2^{nd} , 3^{rd} ,.....respectively known as rows and denoted by R_1 , R_2 , R_3 , and vertical lines counting left to right, 1^{st} , 2^{nd} , 3^{rd} ,..... respectively known as columns and denoted by C_1 , C_2 , C_3 ,.....

(3) **Shape and constituents of a determinant:** Shape of every determinant is square. If a determinant of n order then it contains n rows and n columns. i.e., Number of constituents in determinants = n^2

(4) Sign system for expansion of determinant: Sign system for order 2, order 3, order 4, are

given by $\begin{vmatrix} + & - \\ - & + \end{vmatrix}$, $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$, $\begin{vmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{vmatrix}$,