Evaluation of Determinants.

If A is a square matrix of order 2 , then its determinant can be easily found. But to evaluate determinants of square matrices of higher orders, we should always try to introduce zeros at maximum number of places in a particular row (column) by using the properties and then we should expand the determinant along that row (column).

We shall be using the following notations to evaluate a determinant:
(1) R_{i} to denote $i^{\text {th }}$ row.
(2) $R_{i} \leftrightarrow R_{j}$ to denote the interchange of $i^{\text {th }}$ and $j^{\text {th }}$ rows.
(3) $R_{i} \rightarrow R_{i}+\lambda R_{j}$ to denote the addition of λ times the elements of $j^{\text {th }}$ row to the corresponding elements of $i^{\text {th }}$ row.
(4) $R_{i}(\lambda)$ to denote the multiplication of all element of $i^{\text {th }}$ row by λ.

Similar notations are used to denote column operations if R is replaced by C.

