Properties of Determinants.

P-1:The value of determinant remains unchanged, if the rows and the columns are interchanged.

If $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $D' = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$. Then D' = D, D and D' are transpose of each other.

Note: Since the determinant remains unchanged when rows and columns are interchanged, it is obvious that any theorem which is true for 'rows' must also be true for 'columns'.

P-2: If any two rows (or columns) of a determinant be interchanged, the determinant is unaltered in numerical value but is changed in sign only.

Let $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $D' = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$. Then D' = -D

P-3: If a determinant has two rows (or columns) identical, then its value is zero.

Let
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
. Then, D = 0

P-4: If all the elements of any row (or column) be multiplied by the same number, then the value of determinant is multiplied by that number.

Let $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $D' = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$. Then D' = kD

P-5: If each element of any row (or column) can be expressed as a sum of two terms, then the determinant can be expressed as the sum of the determinants.

e.g.,
$$\begin{vmatrix} a_1 + x & b_1 + y & c_1 + z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} x & y & z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

P-6: The value of a determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column)

e.g.,
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $D' = \begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2 \\ a_2 & b_2 & c_2 \\ a_3 - na_1 & b_3 - nb_1 & c_3 - nc_1 \end{vmatrix}$. Then
 $D' = D$

Note: It should be noted that while applying **P-6** at least one row (or column) must remain unchanged.

P-7 : If all elements below leading diagonal or above leading diagonal or except leading diagonal elements are zero then the value of the determinant equal to multiplied of all leading diagonal elements.

	$ a_1 $	b_1	c_1		a_1	0	0		a_1	0	0	
e.g.,	0	b_2	c_2	=	a_2	b_2	0	=	0	b_2	0	$=a_{1}b_{2}c_{3}$
	0	0	c_3		a_3	b_3	c_3		0	0	c_3	

P-8: If a determinant D becomes zero on putting $x = \alpha$, then we say that $(x - \alpha)$ is factor of determinant.

e.g., if $D = \begin{vmatrix} x & 5 & 2 \\ x^2 & 9 & 4 \\ x^3 & 16 & 8 \end{vmatrix}$. At x = 2, D = 0 (because C_1 and C_2 are identical at x = 2)

Hence (x - 2) is a factor of D.

Note: It should be noted that while applying operations on determinants then at least one row (or column) must remain unchanged or Maximum number of operations = order or determinant -1

It should be noted that if the row (or column) which is changed by multiplied a non-zero number, then the determinant will be divided by that number.