Minors and Cofactors.

(1) Minor of an element: If we take the element of the determinant and delete (remove) the row and column containing that element, the determinant left is called the minor of that element. It is denoted by $M_{i j}$
Consider the determinant $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$, then determinant of minors $M=$
$\left|\begin{array}{lll}M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33}\end{array}\right|$,
Where $M_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|, M_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$M_{13}=$ Minor of $a_{13}=\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Similarly, we can find the minors of other elements. Using this concept the value of determinant can be
$\Delta=a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13}$
or, $\quad \Delta=-a_{21} M_{21}+a_{22} M_{22}-a_{23} M_{23}$ or, $\quad \Delta=a_{31} M_{31}-a_{32} M_{32}+a_{33} M_{33}$.
(2) Cofactor of an element: The cofactor of an element $a_{i j}$ (i.e. the element in the $i^{\text {th }}$ row and $j^{\text {th }}$ column) is defined as $(-1)^{i+j}$ times the minor of that element. It is denoted by $C_{i j}$ or $A_{i j}$ or $F_{i j}$. $C_{i j}=(-1)^{i+j} M_{i j}$
If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$, then determinant of cofactors is $C=\left|\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right|$, where
$C_{11}=(-1)^{1+1} M_{11}=+M_{11}, C_{12}=(-1)^{1+2} M_{12}=-M_{12}$ and $C_{13}=(-1)^{1+3} M_{13}=+M_{13}$
Similarly, we can find the cofactors of other elements.

Note:The sum of products of the element of any row with their corresponding cofactor is equal to the value of determinant i.e. $\Delta=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}=a_{11} C_{11}+a_{21} C_{21}+a_{31} C_{31}$
Where the capital letters C_{11}, C_{12}, C_{13} etc. denote the cofactors of a_{11}, a_{12}, a_{13} etc.
aIn general, it should be noted
$a_{i 1} C_{j 1}+a_{i 2} C_{j 2}+a_{i 3} C_{j 3}=0$, if $i \neq j$ or $a_{1 i} C_{1 j}+a_{2 i} C_{2 j}+a_{3 i} C_{3 j}=0$, if $i \neq j$
DIf Δ^{\prime} is the determinant formed by replacing the elements of a determinant Δ by their corresponding cofactors, then if $\Delta=0$, then $\Delta^{C}=0 \quad, \Delta^{\prime}=\Delta^{n-1}$, where n is the order of the determinant.

