## Product of two Determinants.

Let the two determinants of third order be,

 $D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \text{ and } D_2 = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix}. \text{ Let D be their product.}$ 

(1) **Method of multiplying (Row by row):** Take the first row of  $D_1$  and the first row of  $D_2$  i.e.  $a_1, b_1, c_1$  and  $\alpha_1, \beta_1, \gamma_1$  multiplying the corresponding elements and add. The result is  $a_1\alpha_1 + b_1\beta_1 + c_1\gamma_1$  is the first element of first row of D.

Now similar product first row of  $D_1$  and second row of  $D_2$  gives  $a_1\alpha_2 + b_1\beta_2 + c_1\gamma_2$  is the second element of first row of D, and the product of first row  $D_1$  and third row of  $D_2$  gives  $a_1\alpha_3 + b_1\beta_3 + c_1\gamma_3$  is the third element of first row of D. The second row and third row of D is obtained by multiplying second row and third row of  $D_1$  with  $1^{st}$ ,  $2^{nd}$ ,  $3^{rd}$  row of  $D_2$ , in the above manner.

Hence, 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \times \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix}$$
$$= \begin{vmatrix} a_1\alpha_1 + b_1\beta_1 + c_1\gamma_1 & a_1\alpha_2 + b_1\beta_2 + c_1\gamma_2 & a_1\alpha_3 + b_1\beta_3 + c_1\gamma_3 \\ a_2\alpha_1 + b_2\beta_1 + c_2\gamma_1 & a_2\alpha_2 + b_2\beta_2 + c_2\gamma_2 & a_2\alpha_3 + b_2\beta_3 + c_2\gamma_3 \\ a_3\alpha_1 + b_3\beta_1 + c_3\gamma_1 & a_3\alpha_2 + b_3\beta_2 + c_3\gamma_2 & a_3\alpha_3 + b_3\beta_3 + c_3\gamma_3 \end{vmatrix}$$

Note: We can also multiply rows by columns or columns by rows or columns by columns.