Product of two Determinants.

Let the two determinants of third order be,
$D_{1}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and $D_{2}=\left|\begin{array}{lll}\alpha_{1} & \beta_{1} & \gamma_{1} \\ \alpha_{2} & \beta_{2} & \gamma_{2} \\ \alpha_{3} & \beta_{3} & \gamma_{3}\end{array}\right|$. Let D be their product.
(1) Method of multiplying (Row by row): Take the first row of D_{1} and the first row of D_{2} i.e. a_{1}, b_{1}, c_{1} and $\alpha_{1}, \beta_{1}, \gamma_{1}$ multiplying the corresponding elements and add. The result is $a_{1} \alpha_{1}+b_{1} \beta_{1}+c_{1} \gamma_{1}$ is the first element of first row of D .

Now similar product first row of D_{1} and second row of D_{2} gives $a_{1} \alpha_{2}+b_{1} \beta_{2}+c_{1} \gamma_{2}$ is the second element of first row of D , and the product of first row D_{1} and third row of D_{2} gives $a_{1} \alpha_{3}+b_{1} \beta_{3}+c_{1} \gamma_{3}$ is the third element of first row of D . The second row and third row of D is obtained by multiplying second row and third row of D_{1} with $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ row of D_{2}, in the above manner.
Hence, $D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \times\left|\begin{array}{ccc}\alpha_{1} & \beta_{1} & \gamma_{1} \\ \alpha_{2} & \beta_{2} & \gamma_{2} \\ \alpha_{3} & \beta_{3} & \gamma_{3}\end{array}\right|$
$=\left|\begin{array}{lll}a_{1} \alpha_{1}+b_{1} \beta_{1}+c_{1} \gamma_{1} & a_{1} \alpha_{2}+b_{1} \beta_{2}+c_{1} \gamma_{2} & a_{1} \alpha_{3}+b_{1} \beta_{3}+c_{1} \gamma_{3} \\ a_{2} \alpha_{1}+b_{2} \beta_{1}+c_{2} \gamma_{1} & a_{2} \alpha_{2}+b_{2} \beta_{2}+c_{2} \gamma_{2} & a_{2} \alpha_{3}+b_{2} \beta_{3}+c_{2} \gamma_{3} \\ a_{3} \alpha_{1}+b_{3} \beta_{1}+c_{3} \gamma_{1} & a_{3} \alpha_{2}+b_{3} \beta_{2}+c_{3} \gamma_{2} & a_{3} \alpha_{3}+b_{3} \beta_{3}+c_{3} \gamma_{3}\end{array}\right|$

Note: We can also multiply rows by columns or columns by rows or columns by columns.

