Differentiation and Integration of Determinants.

(1) Differentiation of a determinant:
(i) Let $\Delta(x)$ be a determinant of order two. If we write $\Delta(x) \neq C_{1} \quad C_{2} \mid$, where C_{1} and C_{2} denote the $1^{\text {st }}$ and $2^{\text {nd }}$ columns, then
$\Delta^{\prime}(x)=\left|\begin{array}{ll}C_{1}^{\prime} & C_{2}\end{array}\right|+\left|C_{1} \quad C_{2}^{\prime}\right|$
Where $C^{\prime \prime}$ denotes the column which contains the derivative of all the functions in the $i^{\text {th }}$ column C_{i}.
In a similar fashion, if we write $\Delta(x)=\left|\begin{array}{l}R_{1} \\ R_{2}\end{array}\right|$, then $\Delta^{\prime}(x)=\left|\begin{array}{l}R_{1} \\ R_{2}\end{array}\right|+\left|\begin{array}{l}R_{1} \\ R_{2}^{\prime}\end{array}\right|$
(ii) Let $\Delta(x)$ be a determinant of order three. If we write $\Delta(x)=\left|\begin{array}{lll}C_{1} & C_{2} & C_{3}\end{array}\right|$, then $\Delta^{\prime}(x)=\left|\begin{array}{lll}C_{1}^{\prime} & C_{2} & C_{3}\end{array}\right|+\left|\begin{array}{lll}C_{1} & C_{2}^{\prime} & C_{3}\end{array}\right|+\left|\begin{array}{lll}C_{1} & C_{2} & C_{3}^{\prime}\end{array}\right|$ and similarly if we consider $\Delta(x)=\left|\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right|$, then $\Delta^{\prime}(x)=\left|\begin{array}{l}R_{1}^{\prime} \\ R_{2} \\ R_{3}\end{array}\right|+\left|\begin{array}{c}R_{1} \\ R_{2}^{\prime} \\ R_{3}\end{array}\right|+\left|\begin{array}{c}R_{1} \\ R_{2} \\ R_{3}^{\prime}\end{array}\right|$
(iii) If only one row (or column) consists functions of x and other rows (or columns) are constant, viz.
Let $\Delta(x)=\left|\begin{array}{ccc}f_{1}(x) & f_{2}(x) & f_{3}(x) \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$,
Then $\Delta^{\prime}(x)=\left|\begin{array}{ccc}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & f_{3}^{\prime}(x) \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ and in general $\Delta^{n}(x)=\left|\begin{array}{ccc}f_{1}^{n}(x) & f_{2}^{n}(x) & f_{3}^{n}(x) \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
Where n is any positive integer and $f^{n}(x)$ denotes the $n^{\text {th }}$ derivative of $f(x)$.

