Application of Determinants in solving a system of Linear Equations.

Consider a system of simultaneous linear equations is given by $\left.\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right\}$
A set of values of the variables x, y, z which simultaneously satisfy these three equations is called a solution. A system of linear equations may have a unique solution or many solutions, or no solution at all, if it has a solution (whether unique or not) the system is said to be consistent. If it has no solution, it is called an inconsistent system.

If $d_{1}=d_{2}=d_{3}=0$ in (i) then the system of equations is said to be a homogeneous system. Otherwise it is called a non-homogeneous system of equations.

Theorem 1: (Cramer's rule) the solution of the system of simultaneous linear equations

$$
\begin{equation*}
a_{1} x+b_{1} y=c_{1} \tag{i}
\end{equation*}
$$ and $\quad a_{2} x+b_{2} y=c_{2}$

is given by $x=\frac{D_{1}}{D}, y=\frac{D_{2}}{D}$, where $D=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|, D_{1}=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|$ and $D_{2}=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|$, provided that $D \neq 0$

Note: Here $D=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ is the determinant of the coefficient matrix $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$.

The determinant D_{1} is obtained by replacing first column in D by the column of the right hand side
of the given equations. The determinant D_{2} is obtained by replacing the second column in D by the right most column in the given system of equations.
(1) Solution of system of linear equations in three variables by Cramer's rule:

Theorem 2:(Cramer's Rule) the solution of the system of linear equations
$a_{1} x+b_{1} y+c_{1} z=d_{1}$
$a_{2} x+b_{2} y+c_{2} z=d_{2}$
$a_{3} x+b_{3} y+c_{3} z=d_{3}$
is given by $x=\frac{D_{1}}{D}, \quad y=\frac{D_{2}}{D}$ and $z=\frac{D_{3}}{D}$, where $D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$, $D_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, D_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|$, and $D_{3}=\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|$, Provided that $D \neq 0$

Note: Here D is the determinant of the coefficient matrix. The determinant D_{1} is obtained by replacing the elements in first column of D by $d_{1}, d_{2}, d_{3} . D_{2}$ is obtained by replacing the element in the second column of D by d_{1}, d_{2}, d_{3} and to obtain D_{3}, replace elements in the third column of D by d_{1}, d_{2}, d_{3}.

Theorem 3:(Cramer's Rule) let there be a system of nsimultaneous linear equation n unknown given by

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots .+a_{2 n} x_{n}=b_{2} \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \\ a_{n 1} & a_{n 2} & \cdots & a_{n m}\end{array}\right|$ and let D_{j}, be the determinant obtained from D after replacing the
$j^{\text {th }}$ column by $\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$. Then, $x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots \ldots, x_{n}=\frac{D_{n}}{D}$, Provided that $D \neq 0$

(2) Conditions for consistency

Case 1:For a system of 2 simultaneous linear equations with 2 unknowns
(i) If $D \neq 0$, then the given system of equations is consistent and has a unique solution given by $x=\frac{D_{1}}{D}, y=\frac{D_{2}}{D}$.
(ii) If $D=0$ and $D_{1}=D_{2}=0$, then the system is consistent and has infinitely many solutions.
(iii) If $D=0$ and one of D_{1} and D_{2} is non-zero, then the system is inconsistent.

Case 2:For a system of 3 simultaneous linear equations in three unknowns
(i) If $D \neq 0$, then the given system of equations is consistent and has a unique solution given by $x=\frac{D_{1}}{D}, y=\frac{D_{2}}{D}$ and $z=\frac{D_{3}}{D}$
(ii) If $D=0$ and $D_{1}=D_{2}=D_{3}=0$, then the given system of equations is consistent with infinitely many solutions.
(iii) If $D=0$ and at least one of the determinants D_{1}, D_{2}, D_{3} is non-zero, then given of equations is inconsistent.

(3) Algorithm for solving a system of simultaneous linear equations by Cramer's rule (Determinant method)

Step 1: Obtain D, D_{1}, D_{2} and D_{3}

Step 2:Find the value of D. If $D \neq 0$, then the system of the equations is consistent has a unique solution. To find the solution, obtain the values of D_{1}, D_{2} and D_{3}. The solutions is given by $x=\frac{D_{1}}{D}, y=\frac{D_{2}}{D}$ and $z=\frac{D_{3}}{D}$. If $D=0$ go to step 3 .

Step 3: Find the values of D_{1}, D_{2}, D_{3}. If at least one of these determinants is non-zero, then the system is inconsistent. If $D_{1}=D_{2}=D_{3}=0$, then go to step 4

Step 4: Take any two equations out of three given equations and shift one of the variables, say z on the right hand side to obtain two equations in x, y . Solve these two equations by Cramer's rule to obtain x, y, in terms of z.

Note: The system of following homogeneous equations $a_{1} x+b_{1} y+c_{1} z=0$, $a_{2} x+b_{2} y+c_{2} z=0$, $a_{3} x+b_{3} y+c_{3} z=0$ is always consistent.

If $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \neq 0$, then this system h
As the unique solution $x=y=z=0$ known as trivial

